
Sybil Detection Using Latent Network Structure

GRANT SCHONEBECK, University of Michigan
AARON SNOOK, University of Michigan
FANG-YI YU, University of Michigan

Sybil attacks, in which an adversary creates a large number of identities, present a formidable problem for
the robustness of recommendation systems. One promising method of sybil detection is to use data from
social network ties to implicitly infer trust.

Previous work along this dimension typically a) assumes that it is difficult/costly for an adversary to
create edges to honest nodes in the network; and b) limits the amount of damage done per such edge, using
conductance-based methods. However, these methods fail to detect a simple class of sybil attacks which have
been identified in online systems. Indeed, conductance-based methods seem inherently unable to do so, as
they are based on the assumption that creating many edges to honest nodes is difficult, which seems to fail
in real-world settings.

We create a sybil defense system that accounts for the adversary’s ability to launch such attacks yet
provably withstands them by:

(1) Not assuming any restriction on the number of edges an adversary can form, but instead making a much
weaker assumption that creating edges from sybils to most honest nodes is difficult, yet allowing that
the remaining nodes can be freely connected to.

(2) Relaxing the goal from classifying all nodes as honest or sybil to the goal of classifying the “core” nodes
of the network as honest; and classifying no sybil nodes as honest.

(3) Exploiting a new, for sybil detection, social network property, namely, that nodes can be embedded in
low-dimensional spaces.
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1. INTRODUCTION
The creation of multiple false identities, so-called sybil attacks [Douceur 2002], can
enable actors undo influence in recommendation systems or other algorithms that har-
ness user-generated data [Mobasher et al. 2006]. Controlling even a small portion of
the alleged user-base can enable nefarious actors to hide their ill-gotten influence over
recommendation systems [Yu et al. 2009]. Such recommendation systems might be
used to classify spam, recommend products, or filter user-generated content (e.g. on
an online-social networking site). Due to society’s increasing reliance on the results of
harnessing user-generated content/feedback (e.g. “big data”), guarding the veracity of
the results will become increasingly important. Manipulation can have economically
important (such as product recommendation) and politically important (as a public
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show of support) outcomes which provides rational actors incentives to manipulate
outcomes to match their desires.

This has been recognized as a problem and addressed in the literature via a variety
of methods (see Section 1.2). This paper focuses on a particularly promising method of
using network ties to (implicitly) infer trust.

The models of prior work tend to restrict the adversary by making an edge-limiting
assumption: the number of ties that the adversary can forge between sybils and honest
nodes is restricted [Danezis and Mittal 2009; Tran et al. 2011; Wei et al. 2012; Yu et al.
2008, 2006].

Armed with the edge-limiting assumption and additionally assuming that the hon-
est nodes of a network are “well-connected,” these works show that one of two outcomes
occurs: A) The adversary does not create many sybils; B) The adversary creates many
sybils, but there is a detectable “sparse cut” in the graph. This sparse cut is caused
by the assumption that there are few edges between the many sybil nodes and the
honest nodes. Moreover, it is unique due to the assumption that the honest nodes are
well-connected.

Thus, even if a powerful adversary can create many sybils, and moreover, endow
them with high degree by connecting them with each other, the adversary cannot well
integrate the sybils back into the rest of the network due to the limited number of ties
that the adversary can forge between sybils and honest nodes.

While this defence does indeed (provable) protect against certain types of sybil at-
tacks, the edge-limiting assumption seems to be too strong in practice [Alvisi et al.
2013]. Indeed Yang et al. [2014] recently showed evidence that in the RenRen social
network, sybil attacks did not look like those that the prior work was anticipating,
but instead were characterized by isolated sybils connected by many edges to honest
nodes. We call these periphery attacks for reasons that will be made clear shortly. In
periphery attacks, the number of sybils is only a fraction of the number of edges, yet
Yang et al. [2014] found many sybil nodes in such an attack pattern. As such, these at-
tacks violate the edge-limiting assumption; so the guarantees of the conductance-based
sybil defences appear not to apply. Indeed Alvisi et al. [2013] showed via simulation on
a real network, that the conductance-based defences do a poor job defending against
such attacks.

Such attacks seem difficult to attenuate, in particular because often time the major-
ity of nodes in a social network have a similar appearance. For example Leskovec et al.
[2009] showed that networks have a “core/periphery” structure, with many nodes on
the periphery poorly connected to the core of the network, which was difficult to parti-
tion. Additionally, Yardi et al. [2009] showed that in Twitter, the majority of nodes in
Twitter only had a few friends, and that the spammers looked like-wise. Alvisi et al.
[2013] looked into a collection of network topology properties and showed that the only
one that was useful to sybil detection is conductance, which failed in thwarting periph-
ery attacks.

1.1. Our Contribution
We create a framework that accounts for the adversary’s ability to launch periphery
attacks. Additionally, we create a network topology based sybil defense system that
both accounts for and provably withstands periphery attacks. Our work builds upon
and advances prior work in three main ways:

(1) We replace the edge-limiting assumption with a new assumption: A random frac-
tion of the honest nodes are compromisable and can easily be tricked into con-
necting with sybil nodes; but the remainder of the honest nodes are trustworthy
and will refuse connections from sybils. With such an assumption, periphery at-



tacks are easy for an adversary to launch. The adversary can test which nodes are
gullible, and then connect to them at will with his sybil network.

(2) We relax the goal from classifying all nodes as honest or sybil to the goal of clas-
sifying the “core” nodes of the network as honest; and classifying no sybil nodes
as honest. Our model acknowledges the difficulty of differentiating between the
“periphery” nodes of the honest network and nodes that are part of a coordinated
periphery sybil attack. Indeed this seems impossible to do with only information
about network topology.

(3) We identify a new network property namely, that they can be embedded in low-
dimensional spaces as useful to detecting sybils. For a sybil to “blend in” with the
core of the topology structure of a network it is not enough that he has many ties;
rather the sybil needs a large number of ties amongst other nodes that are “close”
in the network. A sybil that connects to random nodes, will not have a “location” in
the network the way an honest node might.

The zero false positives is important because even a few sybils can distort recom-
mendations [Yu et al. 2009].

For many applications, like learning algorithms, or implicit community voting algo-
rithms, having white-listed nodes is enough [Alvisi et al. 2013]. The system needs a
representative sample of nodes. If the nodes on the periphery are not counted, then, as
long as the nodes in “core” are sufficiently numerous, the system can succeed. For other
applications (e.g. spam detection), such a classification might not be enough. In such
settings, other tools must be used (e.g. user feed-back on spam; setting participation
limitations for new nodes, etc).

While new to sybil detection literature, our model is well grounded in the social
network literature. We will give additional theoretical justification in Section 3.2 after
we define the specific network model. Finally, in Section 6 we run experiments on a
variety of data sets, verifying that our assumptions about network structure hold in
practice.

1.2. Related Work
Well-mixed networks. A growing number of works look to using network topology

to aid in sybil detection.
Yu et al create SybilGuard [Yu et al. 2006] and SybilLimit [Yu et al. 2008], which

use a random walk technique to bound the number of sybils that an adversary can pro-
duce for each edge that they can produce to honest nodes. This bound is O(

√
n log(n))

for SybilGuard and was improved to O(log(n)) in SybilLimit. However, in our setting
where we do not restrict the number of edges that sybils can make to honest but
gullible nodes, these guarantees are empty.

These works are typically called “conductance-based” and require an assumption
that the network of honest nodes is well-mixing (and thus has high conductance). The
intuition is that if there are many sybil nodes, but not many edges between the sybils
and the honest nodes, then these algorithms will find a sparse cut. The well-mixing
assumption is required to ensure that this sparse cut is unique.

Since these original works, several other works have made improvements along cer-
tain dimensions. Danezis and Mittal [2009] create SybilInfer which, instead of clas-
sifying nodes as safe or unsafe, using Bayesian reasoning, outputs confidence. Unlike
aforementioned conductance-based work SybilInfer is a centralized algorithm. They
point out that the run times of the prior, distributed works are very slow because they
detect one sybil at a time and show that SybilInfer scales better. Likewise, Wei et al.
[2012] propose SybilDefender which uses random walks, but is centralized and has



improved scaling properties. They also suggest looking at tie strength as a method
for improving results. Tran et al. [2011] propose Gatekeeper which achieves the same
worst-case bound as SybilLimit, but improves upon it when the number of honest-sybil
edges is very small.

Clustered Honest Networks. All of these works must assume that the network
among honest nodes is well-mixing. The SybilLimit [Yu et al. 2008] paper provides
some empirical evidence for this, but the claim is generally disputed. For example,
Viswanath et al. [2011] analyze the state of current network-based Sybil defenses,
showing that they rely on local community structure, and have trouble when their are
cuts in the honest networks because they have difficulty distinguishing between the
natural partitions in the network of the honest nodes, and the sparse cuts between
the sybils and honest nodes. They propose borrowing techniques from the community
detection literature.

Alvisi et al. [2013] also believe that the network will be too fragmented to employ the
previous techniques, and show rigorous theoretical bounds to substantiate this claim.
Without the “well-mixing” assumption, they fear the problem may be intractable as
distinguishing between honest and sybil communities seems impossible. For example,
consider the extreme case where all communities, both sybil and honest, are small
and disjoint. Instead of sybil detection, they suggested “personalized white-lists”. They
point out that there is no need to distinguish between sybil and honest communities
as long as you use the recommendation of each community for the nodes in it. A draw-
back of this is that if some communities are small, there may not be enough data to
provide optimal recommendations. Like Alvisi et al, this work provides a white-listing
strategy. However, we provide a global (not local) white list, and the honest nodes our
model cannot classify are nodes on the periphery that belong to no community.

Cai and Jermaine [2011] also address the problem of potential community struc-
ture within the honest nodes. Their algorithm first partitions the network into disjoint
communities, and then tries to ferret out the honest communities from the sybil com-
munities by embedding them into a low dimensional space. They argue that the sybil
communities will be on the periphery of this latent community graph. To get this re-
sult, their model assumes 1) the network of honest and sybil nodes partitions into well-
structured and detectable communities, 2) that honest nodes connect to nodes in other
communities according to a latent network of communities, and 3) that some commu-
nities are easy for sybils to attach to, while other communities are difficult for sybils
to attach to. Our work differs in several ways. Most fundamentally, their algorithm
does not guard against periphery attacks. In fact, their model does not allow periph-
ery attacks because they make a necessary (in their setting) edge-limiting assumption.
Moreover, they use machine learning techniques and thus do not obtain rigorous secu-
rity results. Finally, our network models differ: our model of latent structure applies
to the nodes and not communities; and in our model which nodes are vulnerable is
decided at the node level rather than the community level.

Other Strategies. An increasing sequence of works looks at information beyond
the social graph such as users’ click-stream data [Wang et al. 2013]; entry and exit
times [Noh et al. 2014], number of rejected friend requests [Alvisi et al. 2013], etc [Yang
et al. 2014]. It is clear that they currently provide large practical benefits [Yang et al.
2014]. Moreover, they can be usefully combined with network topology based tech-
niques [Alvisi et al. 2013]. Thus it seems like this is a useful orthogonal direction to
pursue in ensuring the validity of recommendations. However, a key disadvantage of
many of these techniques is that they rely on an uninformed adversary, that does not
understand the behavior of honest nodes well enough to mimic them. Thus, their use-
fulness may wane as they are increasingly deployed and understood.



Viswanath et al. [2015] suggests detection can be conducted by using individual’s
temporal behaviour statistics which would be encoded in the time stamp of individual’s
reputation score. The goal here is to severely delay the potential effect of sybils rather
than to eliminate it outright.

Another approach is to integrate sybil detection together with opinion aggrega-
tion (e.g. SumUp in Tran et al. [2009]). A key advantage here is that the sybil nodes do
not have to be completely eliminated; but instead can be “down-weighted”. However,
a disadvantage of such approaches is that if they depend too sharply on the specific
aggregation method, they loose some generality.

Another, somewhat disjoint, line of inquiry is for the setting where a central author-
ity can restrict the entry of sybils through some verification or payment (e.g.Von Ahn
et al. [2003] or Netflix). And defense in sensor networks [Lv et al. 2008; Yin and Madria
2007] where the solution concepts offered are light-weight cryptography (so that it can
be efficiently executed).

2. PRELIMINARIES
A metric space is an ordered pair M = (V, d) where V is a set and d is a metric on
V mapping V × V to R+ such that for any u, v, w ∈ V , the following holds: d(u, v) ≥ 0;
d(u, u) = 0; d(u, v) = d(v, u); and d(u, v) ≤ d(u,w) + d(w, v). We say that M ′ = (V ′, d′) is
a metric subspace of M = (V, d) if V ′ ⊆ V and d′ = d|V ′×V ′ . We only consider finite
metric spaces, i.e. |V | ∈ N.

A metric graphG = (V,E, d) is an undirected graph with distances defined between
all pairs in V such that (V, d) is a metric space.

We define BM (u, r) = {x ∈ V : d(u, x) < r} as a ball with radius r centered at u in
metric space M . We will often drop the subscript when it is clear from context, and
denote B(u, 1) by B(u).

To capture the idea of low dimension in such a metric space, we use the notion of
doubling dimension defined as follows: the doubling dimension dim(M) of a metric
space M = (V, d) is the minimum k such that every ball of radius r is covered by 2k

balls of radius R/2; i.e. ∀c ∈ V, r > 0, B(c, r) ⊆ V , there exists c1, c2, ..., cm where m ≤ 2k

such that B(c, r) ⊆
⋃
iB(ci, r/2).

The doubling dimension is a very general definition of dimension. When it is applied
to Euclidean vector spaces, it recovers the usual definition of dimension, but it also can
apply to arbitrary metric spaces. Additionally, note that all finite metric spaces have
finite doubling dimensions.

We define the neighbors of u in metric graph (V,E, d) to be N(u) = {v : (u, v) ∈ E},
and the core neighbors of u to be CN(u) = B(u) ∩ N(u), i.e the neighbors of u at
distance at most 1.

3. SYBIL DETECTION FRAMEWORK
3.1. Metric Space Properties
We first define some properties of a metric space M = (V, d) which we will make use of
throughout.

Definition 3.1. The density of a metric space is den(M) = minu∈V |Bu| which is the
minimum cardinality of a unit ball.

Definition 3.2. We say that U is an r-code of a metric space M = (V, d) if U ⊆ V
and ∀u, v ∈ U, d(u, v) > r and V ⊆

⋃
u∈U B(u, r). That is U is a maximal set of points of

distance strictly more than r from each other.

Definition 3.3. We define the volume of a metric space M = (V, d) to be vol(M) =
max{|U | : U is a 2-code of M}.



We show a natural relation between the density, the volume, and the cardinality of
a metric space.

LEMMA 3.4. Let M = (V, d) be a metric space with density den(M) and volume
vol(M). Then

den(M) · vol(M) ≤ |V |.
PROOF. Let Y be a 2-code of M such that |Y | = vol(M). On the one hand we have

that

den(M) · vol(M) ≤
∑
y∈Y
|B(y)|

because for any v ∈ V , den(M) ≤ |B(y)| (by Definition 3.1) and vol(M) = |Y | (by
Definition 3.3).

On the other hand, we have that∑
y∈Y
|B(y)| = |

⋃
y∈Y

B(y)| ≤ |V |

because the B(y) are disjoint—recall that for all x, y ∈ Y we have d(x, y) > 2—and⋃
y∈Y B(y) ⊆ V .

Here we provide an efficient algorithm to compute an approximation of the largest
2-code.

LEMMA 3.5. Let M = (V, d) be a metric space and dim(M) = k, then there exists a
polynomial algorithm f , such that f(M) is a 2-code and vol(M)

4k
≤ |f(M)| ≤ vol(M).

PROOF. Let Y be the maximum 2-code of M , then by definition |Y | = vol(M). The
algorithm f iteratively inserts a node x into X, and removes all the nodes in B(x, 2).
Therefore each pair in X has distance more than 2, and |X| ≤ |Y | = vol(M) by defini-
tion.

On the other hand, consider a 1-code Z of metric spaceM , because ∀u, v ∈ Y, d(u, v) >
2, every unit ball of Z contains at most one y ∈ Y . Thus

|Y | ≤ |Z|.
Moreover because dim(M) = k, B(x, 2) can be covered by 4k 1

2 balls, and each 1
2 ball

can contains at most 1 element in Z. Thus

|Z| ≤ 4k|X|.
Putting this together |X| ≤ |Y | = vol(M) ≤ Z ≤ 4k|X| which yields the lemma.

Definition 3.6. Given a metric space M = (V, d), we define a graph Hr(M) = (V,E)
where (u, v) ∈ E if d(u, v) ≤ r.

Definition 3.7. If H1(M) is connected, we say a metric space M is hyper-
connected.

This characterizes the metric space as “well connected” so that for all pairs of nodes
there exists a sequence of points such that the distance between each pair of consecu-
tive nodes is less than 1.

Definition 3.8. We say that M̂ = (V̂ , d̂) is a core space with density ∆ of a metric
space M = (V, d) if M̂ is a submetric of M ; density ∆ = minv∈V̂ |BM (v)|; and H1(M̂) is
connected.



This idea of a core space is important, because we only hope to classify nodes in the
“core” of the network, not those in the periphery. This is a somewhat connected region
with density above some threshold.

3.2. Network of Honest Nodes
In this section we both highlight exactly what we require of honest networks and pro-
vide motivation for this model.

We will consider metric graphs that are generated on top of a metric M = (V, d) on n
points. We would like that these points a) have doubling dimension bounded by some
parameter k; and b) have a “large” core space M̂ with density ∆ where ∆ is again a
parameter.

The edges of the graph are generated by including each possible edge (u, v) where
d(u, v) ≤ 3, with probability ρ. Any additional edges may then be added to the graph
after the outcomes of these random edges are realized.

Recapping, the important parameters are n, the number of nodes; k the doubling
dimension; ∆ the density of the core; and ρ, the minimum probability that edges appear
between nodes close in the metric.

We think that this is a rather general model that is well-justified. First, the as-
sumption that nodes are embedded in a low-dimensional space where nearby nodes
are connected is implicit in many well-regarded network models. For example, in the
Watts-Strogatz model [Watts and Strogatz 1998] nodes are arranged on ring (which is
just a one-dimensional lattice) and any two nodes within some distance d on the ring,
are connected via an edge with some probability that is a parameter of the model.
Similarly, Kleinberg’s Small World Model [Kleinberg 2000] has the nodes embedded
into a low dimensional lattice structure where nodes are connected to neighbors. Ad-
ditionally, Kumar et al. [2006] allows an arbitrary metric space with low doubling
dimension and requires an additional property which is similar to our core space re-
quirement. Though the latent space Abraham et al. [2013] considers is not necessary
a metric space, our method can be easily applied to their model, because once having
the distance function of all categories, we can removed individuals which fail to have
enough common neighbors in all categories.

A host of other works from the mathematical, computer science, sociology, and statis-
tics communities have also mathematically modeled social networks as coming from a
low-dimension latent space and use the guiding principal that nodes which are “closer”
in the latent space are more likely to be attached [Abraham et al. 2013; Clauset et al.
2008; Fraigniaud et al. 2010; Handcock et al. 2007; Hoff et al. 2002; Kermarrec et al.
2011; Krivitsky et al. 2009; Raftery et al. 2012; Sarkar et al. 2011; Sarkar and Moore
2005].

The intuition behind these models is that the location of a node in a metric space en-
codes some key properties of the individual, e.g. geographic location, income, political
beliefs on a spectrum, education level, etc; and that these attributes are sufficient so
that when individuals are “close” in this space, they are likely (with probability ρ) to be
friends. Notice that in most of the aforementioned models, nodes are always neighbors
with the nearby nodes in the metric; where as we only require that nearby nodes are
neighbors with some constant, non-zero probability.

Furthermore, there is evidence of the accuracy of such models [Adamic and Adar
2005; Backstrom, Sun, and Marlow Backstrom et al.; Butts 2003; Liben-Nowell et al.
2005; McFarland and Brown 1973; Mok et al. 2007]. In Section 6, we provide our own
experimental result which confirms that, for the networks we look at, they can be
fruitfully embedded in a low-dimensional latent space. An additional feature of our



model is that additional edges may be added to the graph in any, even adversarial,
manner.

Second, our model additionally requires that the nodes be sufficiently dense in the
metric. Notice that most of the aforementioned models have the nodes spread out uni-
formly, so their are no sparse regions of the network. We additionally relax this as-
sumption and only require that there is a “large” dense region. To a first approxima-
tion, this dense region is the area we will be able to white-list; while nodes in sparse
regions may not be included in the white list. The necessity of dealing with sparse
regions is empirically motivated by aforementioned findings of Leskovec et al. [2009],
Alvisi et al. [2013], and Yardi et al. [2009] which all identify nodes on the periphery
with low-degree and/or that can be disconnected from the network by only removing a
few edges.

3.3. Detection Game
In this section we propose a formal model for sybil detection as a game with two agents:
the adversary and the distinguisher.

The adversary will be given a metric graph G. We say that the nodes of G are the
honest nodes. This set of honest nodes is partitioned into a set of compromisable
nodes C that the adversary can attach to and a set of trustworthy nodes T that the
adversary cannot attach to. The adversary must output a new metric graph G′ which
is the same as G except that the adversary can add up to Σ sybil nodes and any edges
that it likes except those between trustworthy nodes and sybil nodes.

The distinguisher will then be given the adversary’s output graph (as well as some
parameters), and must create a white-list of as many nodes as possible without includ-
ing any sybil nodes.

Definition 3.9. Let A : (G,C, p, ρ,Σ) → G′ be a (possibly random) function where
G = (V,E, d) and G′ = (V ′, E′, d′) are metric graphs, C ⊆ V is a set of “compromisable”
nodes, p, ρ are real values between 0 and 1, and Σ > 0. We say that A is an adversary
if for every input G,C, p, ρ,Σ:

(1) |S| < Σ where S = V ′ \ V .
(2) The distance function d′ is a metric that extends d to V ∪ S.
(3) E ⊆ E′ butE′ contains no edges from V \C to S. HoweverE′ may contain additional

edges between V and itself, between S and itself, and between C and S.

Our definition limits the adversary in two keys ways: first, he can only introduce so
many sybil nodes. Such a condition is necessary because otherwise the adversary could
just create a completely new graph on a disjoint set of vertices which is identical to the
original graph; no detection algorithm could distinguish the ordinal graph from the
identical facsimile. Second, the adversary can only connect sybils to the original net-
work via compromisable nodes. The intuition is that some set of nodes can by tricked
or bribed into connecting with the sybils. The remaining vertices are more trustworthy,
concerned, aware, and/or vigilant and are thus immune from the adversaries attempts
to connect. This aligns with the observations of Yang et al. [2014] that software toolk-
its which facilitate the creating of sybil nodes for the Renren cite were available and
would attempt to identify network nodes that would likely accept a sybil’s tie request
(e.g. nodes with extremely large degree).

Note especially that the adversary can also add ties between honest nodes. This is
not meant to model that the adversary could or would actually compel honest nodes to
add a tie (though it does capture this as well). Rather it is meant to model that, apart
from the ties in the network that we assume to exist from the low-dimensional embed-
ding (that are included in G and cannot be removed), the rest of the graph is adver-



sarial bad. In actuality, we think that the graph on the honest nodes would come from
nature. However, we do not wish to prescribe anything more about the honest graph
other than that nodes which are “close” in the low-dimensional latent space are often
connected; and may be connected in a way that is not helpful to the “distinguisher.”

Definition 3.10. A distinguisher D is a (possibly random) function
D : (G′, p, den(M), vol(M)) → W where G′ = (V ′, E′, d′) is a metric graph,
p, den(M), vol(M) are real valued parameters, and W ⊆ V ′.

Now we formally define a detection game on a metric space M = (V, d).

Definition 3.11. We define a detection game Γ with input (M,p, ρ,Σ, A,D) where
M is a metric space, p, ρ are real values between 0 and 1, Σ > 0, A is an adversary, and
D is a defender as follows,

(1) Based onM = (V, d), a metric graphG = (V,E, d) is instantiated whereE is created
by independently including each edges (u, v) with probability p if d(u, v) < 3, and
otherwise with probability 0. [Note that in Step 3, the adversary can add any addi-
tional ties it likes between honest nodes in an attempt to thwart the distinguisher.
At that point the adversary knows which nodes are trustworthy and compromis-
able, so the additional edges can depend on those labels.]

(2) We randomly partition V into two sets T (for trusthworthy) and C (for compromis-
able). Each agent v ∈ V will, independently, be included in set C with probability
ρ and in set T otherwise.

(3) The adversary A creates a new metric graph G′ = A(G,C, p, ρ,Σ).
(4) The distinguisher D outputs a list of nodes W with input (G′, p, den(M), vol(M))
(5) If W ⊆ V we say that the distinguisher succeeds with score |W |; otherwise, if

W ∩ S 6= ∅ we way that the distinguisher fails.

We note that we give the distinguisher help via the parameters p, den(M), vol(M).
In general, we do not feel this assumption is overly restrictive, as distinguisher could
likely learn these over time.

We also node that the detection game maps onto our definition of honest networks
in Section 3.2. In particular, this gives the adversely (perhaps unrealistic) power to
manipulate the graph of honest nodes by adding additional edges between any pair of
vertices even after the random edges have been realized and the compromisable nodes
have been determined. However, this only makes our results stronger.

4. SYBIL DETECTION ALGORITHM
In this section present our main result by exhibiting a detection algorithm that prov-
ably works when the adversary is restricted to only using a fixed number of sybil nodes.

THEOREM 4.1. Fix 0 < ε < 1√
2

and let Γ(M,p, ρ,Σ, A,D) be a detection game where
p, ρ are probabilities such that 1+ε

1−ερ < p, 0 ≤ Σ, and M is a metric space that has
n nodes and doubling dimension k with core-space M̂ = (V̂ , d̂) with density ∆ with
m = |V̂ |. Then if

Σ < (1− ε) p

2 · 128k
den(M̂) · vol(M̂)− (1 + ε)ρn

there exists a detection algorithm D such that for any adversary A the detection algo-
rithm D will succeed with score at least m with probability

1− n2 exp(−ε
2

2
p∆)− n exp(−ε

2

3
ρ∆)− exp(−ε

2

3
ρn).



Note that the size of the white-list is at least as large as the dense core of M . The
parameters of the theorem can cover a variety of settings. For example, if ∆ = ω( log(n)

pε2 )

and ε2ρ = o(n/ log n), then the probability of error is negligible (less than the inverse
of any polynomial).

To the end of proving Theorem 4.1, we propose the detection algorithm which is
specified in Algorithm 1.

ALGORITHM 1: Detection algorithm

Input: G′ = (V ′, E′, d′), p, and ∆, vol(M̂)
Output: W , denoting the white-listed nodes.

1 Find a 2-code Y of H2(V ′, d′) by the algorithm in Lemma 3.5.
2 Obtain (V ′′, E′′, d′′) from G′ by iteratively finding nodes u ∈ V ′ where
|NG′(u) ∩BG′(u, 2)| < (1− ε)p ·∆ and removing these nodes and all incident edges.

3 for y ∈ Y do
4 Gy(Vy, Ey, dy)← (V ′′, E′′, d′′)
5 Wy ← ∅
6 Uy ← ∅
7 while Uy = ∅ and |BGy (y)| ≥ ∆ or ∃v ∈ Uy such that ∃u ∈ BGy (v) \ Uy where |BGy (u)| ≥ ∆

do
8 if Uy = ∅ then
9 u← y

10 else
11 Set u to be some u from Step 7
12 end
13 Uy ← Uy ∪ {u}
14 for v ∈ BGy (u, 2), and v 6∈Wy do
15 if |NGy (v) ∩BGy (u)| > (1− ε)p|BGy (u)| then
16 Wy = Wy ∪ {v}
17 else
18 Remove v and all its edges from Gy.
19 end
20 end
21 end
22 end

Before we dig into the proof we sketch the intuition behind the detection algorithm.
Verification goes as follow: the algorithm pretends that there is no sybil node in the
starting region B(y) for some y from Step 3 and attempts to certify nodes v ∈ B(y, 2)
by checking whether they have many neighbors in B(y). Then the algorithm moves
to a different center u in Step 13 and verifies the region B(u, 2). Doing this, it will
iteratively remove the sybils on the boundary; allowing it to grow a white-listed region
in the graph to cover the entire core.

The remaining difficulty is to find a good starting point y. In Step 3, we say y ∈ V is
a good starting point if B(y)∩S = ∅ and |B(y)| ≥ ∆, and say y ∈ V is a bad starting
point if B(y) ∩ S 6= ∅ and |B(y)| ≥ ∆. The main idea is that the adversary cannot
corrupt every region of the graph with many nodes. Thus after Step 2 there will be
many regions of the graph with no sybils. In Step 1, we get a maximal independent set
corresponding to a 2-code of (V ′, d′) which ensures that we are exploring many diverse
regions of the network.

The proof can be separated into two parts:



(1) (completeness/soundness) If y from Step 3 is a good starting point, then with high
probability, this algorithm will white-list every honest node in the core space and
no sybil nodes will be white-listed;

(2) (majority) There are many y ∈ Y that are good starting points, and not too many
bad starting points.

We first prove three lemmas about structural properties of the network that occur
with high probability. The first of these lemmas shows that if node v is near a node u
with many nodes within unit distance, then node v has large degree. The second says
that if node v has many nodes within unit distance, then v does not (fractionally) have
too many compromisable nodes within unit distance. The third lemma bounds the total
number of compromisable nodes.

We will then show that if these properties hold, then our detection algorithm suc-
ceeds. The proofs of the following 3 lemmas follow from a simply application of a Cher-
noff bound, and are deferred to the full version.

LEMMA 4.2. Let Γ(M,p, ρ,Σ, A,D) be a detection game, let n = |M |, and let ∆ ∈
R≥0. Then with probability 1 − n2 exp(− ε

2

2 p∆) for every u, v ∈ M with d(u, v) ≤ 2 and
|BM (u)| ≥ ∆, it is the case that |NG(v) ∩BM (u)| ≥ (1− ε)p|BM (u)|.

LEMMA 4.3. Let Γ(M,p, ρ,Σ, A,D) be a detection game, let n = |M |, and let ∆ ∈
R≥0. Then with probability 1 − n exp(− ε

2

3 ρ∆) for every u ∈ M with |BM (u)| ≥ ∆, it is
the case that |BM (u) ∩ C| ≤ (1 + ε)ρ|BM (u)|.

LEMMA 4.4. Let Γ(M,p, ρ,Σ, A,D) be a detection game and let n = |M |, then with
probability 1− exp(− ε

2

3 ρn), |C| < (1 + ε)ρn.

Now notice that by a union bound, the statements of Lemmas 4.2, 4.3, and 4.4 holds
with probability 1− n2 exp(− ε

2

2 p∆)− n exp(− ε
2

3 ρ∆)− exp(− ε
2

3 ρn).
We now assume that all these statements hold, and show that when this is the case,

our detection algorithm works. The next lemma shows that no honest node within unit
distance of a node with high density is removed in Step 2.

LEMMA 4.5. Let Γ(M,p, ρ,Σ, A,D) be a detection game where D is our detection al-
gorithm with inputs G′, p,∆, vol. Let v ∈ V with |BG(v)| ≥ ∆ then, assuming statement
of Lemma 4.2 holds, after Step 2, BG′′(u) ∩ V = BG(u) ∩ V .

The proof is deferred to the full version, but follows from the idea that no node can be
the first removed.

LEMMA 4.6. Let M be a metric space and let M̂ be a core space with density ∆. Let
Γ(M,p, ρ,Σ, A,D) be a detection game where D is our detection algorithm with inputs
G′, p,∆, vol(M̂). Assume that the conditions in Lemmas 4.2 and Lemma 4.3 are true,
and let y be a good starting point. Then the Detection algorithm will output Wy ⊆ V .
Moreover, if y ∈ M̂ then V̂ ⊆Wy ⊆ V

PROOF. We assume the statements of Lemma 4.2 and Lemma 4.3 and that y is a
good starting point and then we will show that the following always hold:

(1) Vy ∩ V = V ′′ ∩ V ,
(2) Wy ∩ S = ∅,
(3) For all u ∈ Uy and u′ ∈ BGy

(u) where either |BGy
(u′)| ≥ ∆ or |BG(u′)| ≥ ∆, we have

BGy
(u′) = BG(u′) ⊆Wy.



If we prove this, then, by the second statement, we know that Wy ⊆ V . We must
also show that if y ∈ M̂ then M̂ ⊆ Wy. We show something stronger: each node in M̂
is eventually included in Uy. This is a stronger statement because, by Statement 3, if
u ∈ Uy, then BGy (u) = BG(u) ⊆ Wy. Say that some node w ∈ M̂ is never added to Uy.
By the hyper-connection property of M̂ we can create a spanning tree on the nodes of
H1(M̂) rooted at y, and let w be a “closest” node to y (in the tree) that is not included
and let v be its parent.

However, from the third statement above, we know BG(w) = BGy
(w) because

d(w, v) ≤ 1, v ∈ Uy and |BG(w)| ≥ ∆. Thus w will also be processed as a center, and this
is a contradiction.

We now show that the three properties always hold via induction on |Uy|. For |Uy| =
0, the first statement holds because at that point Vy = V ′′; while the second statement
holds because Wy = ∅ and the third statement holds because Uy = ∅.

We now show the inductive step, that if the three statements hold when |Uy| = k,
they will also hold when |Uy| = k + 1.

Lets say that u is the k + 1st node chosen for a center in Step 13. We know that
BGy

(u) = BG(u) either because u = y and then it follows from the fact that y is a
good starting point and Lemma 4.5, or because there must exist w ∈ Uy such that
d(w, u) ≤ 1, and then it follows from the third assumption (note that |BGy

(u)| ≥ ∆
because u was chosen to be a center).

Before processing center u, a node v ∈ Vy(u) ∩ V has two cases:
1) v 6∈ BGy

(u, 2) then v will certainly be in Vy after the process;
2) if v ∈ BGy

(u, 2), since Lemma 4.2 holds, we have |NG(v)∩BG(u)| ≥ (1− ε)p|BG(u)|.
Because BGy (u) = BG(u), we have also have |NGy (v)∩BGy (u)| ≥ (1− ε)p|BGy (u)|. Thus
v ∈ Vy holds after the process, and that proves Vy ∩ V = V ′′ ∩ V , and BGy (u, 2) ⊆Wy.

On the other hand, let s ∈ BGy (u, 2) be a sybil node. Then s can only connect to
the compromised nodes in BGy (u) because, by assumption, BGy (u) = BG(u), which
contains no sybil nodes. Formally, we see:

|NGy (s) ∩BGy (u)| ≤ |C ∩BGy (u)| = |C ∩BG(u)| (1)
< (1− ε)ρ|BG(u)| = (1− ε)ρ|BGy

(u)| (2)
≤ (1 + ε)p|BGy (u)|. (3)

The first equality is from the assumption thatBGy
(u) = BG(u), the second inequality

is from the assumption of Lemma 4.3, and the final inequality is because 1+ε
1−ερ < p. This

proves Wy ∩ S = ∅.
It remains to show that part 3) holds. We break the analysis into two cases by parti-

tioning Uy into Uy \ {u} and {u}.
First, let v ∈ Uy \ {u} and let u′ ∈ BGy

(v) where |BGy
(u′)| ≥ ∆ or |BG(u′)| ≥ ∆.

Then, by the inductive hypothesis, after the time the v was processed, we had that
BGy

(u′) = BG(u′) ⊆Wy. No node in Wy is ever removed, so this still must be the case.
Second, let u′ ∈ BGy

(u) with |BGy
(u′)| ≥ ∆ or |BG(u′)| ≥ ∆ and so that u′ was not

considered above. Then, we must show BGy
(u′) = BG(u′) ⊆Wy.

Note that combining the facts that BGy
(u′) ⊆ BGy

(u, 2) and BGy
(u, 2) ⊆ Wy (argued

above) we see, that BGy (u′) ⊆ Wy. Using that BGy (u′) ⊆ Wy and Wy ∩ S = ∅ we see
that BGy (u′)∩S = ∅, which means that BGy (u′) has no sybils and so BGy (u′) ⊆ BG(u′).
This additionally implies that |BG(u′)| ≥ ∆.

It remains to show that BG(u′) ⊆ BGy (u′). Intuitively, the one problem we could
encounter is that some nodes of BG(u′) might have been removed in Step 2. However,
this does not happen. Rather BG(u′) = BG′′(u′) ∩ V because |BG(u′)| ≥ ∆ and so by
Lemma 4.5 BG′′(u′) ∩ V = BG(u′). We use this to get:



BG(u′) =BG′′(u′) ∩ V = BG′′(u′) ∩ V ′′ ∩ V (4)
=BG′′(u′) ∩ Vy ∩ V = BGy

(u′) ∩ V ⊆ BGy
(u′) (5)

The third equality is because V ′′ ∩ V = Vy ∩ V , as proved above.
Putting everything together we have BG(u′) = BGy

(u′) ⊆ Wy and this concludes the
proof of the lemma.

LEMMA 4.7. (Majority) Let Γ(M,p, ρ,Σ, A,D) be a detection game and assume that
the condition in Lemma 4.4 is true, and let Y be the 2-code D gets after step 1, then at
most |Y |

2·4k ≤
vol(M̂)
2·4k points in Y are bad starting points.

PROOF. Suppose the lemma is false. Then we consider the subset Y ′ ⊆ Y such that
every y′ ∈ Y ′ is a bad starting point and

|Y ′| ≥ |Y |
2 · 4k

.

We consider some X ⊆ Y ′ such that X is a 8-code for Y ′. For each x ∈ X, |B(x, 8) ∩
Y ′| ≤ 8k because B(x, 8) can be covered by less than 8k unit balls by definition of
doubling dimension and each unit ball contains at most 1 element of Y ′. The cardinality
of 2-code Y is greater than vol(M̂)

4k
by Lemma 3.5. Thus

|X| ≥ |Y
′|

8k
≥ |Y |

2 · 32k
≥ vol(M̂)

2 · 128k
(6)

By the assumption of Y ′ every x ∈ X ⊆ Y is a bad starting point which means
∀x ∈ X,∃sx ∈ B(x) which is a sybil node, and since sx survives after step 2, |B(sx, 2)| >
(1− ε)p ·∆. Moreover, for all x, z ∈ X and x 6= z, d(sx, sz) ≥ d(x, z)− d(x, sx)− d(z, sz) >
8− 4 = 4, B(sx, 2), B(sz, 2) are disjoint. On one hand,

|C ∪ S| ≥ |
⋃
x

B(sx, 2)| ≥ |X|(1− ε)p ·∆

Using (6) and the condition on S, we get

|C| ≥ −|S|+ (1− ε)pvol(M̂)∆

2 · 128k
> (1 + ε)ρn

On the other hand, by Lemma 4.4, |C| ≤ (1 + ε)ρn, and so we get a contradiction.

Now we can prove the Theorem 4.1

PROOF. First, we note that the statements of Lemmas 4.2, 4.3, and 4.4 hold with
probability

1− n2 exp(−ε
2

2
p∆)− n exp(−ε

2

3
ρ∆)− exp(−ε

2

3
ρn) (7)

In the case that y is a good starting point, we never add a sybil nodes to Wy by
Lemma 4.6. By Lemma 4.7, there are only |Y |

2·4k bad starting points in Y . Thus no sybil
meets the threshold in Step 7 to be included in W .

However, by Lemma 3.5, for any node v in the M̂ -core, there are vol(M̂)
4k

start nodes

in Y. Moreover, less than vol(M̂)
2·4k of them can be bad. Thus at least vol(M̂)

2·4k of them are
good. By Lemma 4.6 for these y, M̂ ⊆Wy and thus, M̂ will be included in W .



5. SYBIL DETECTION WITH A TRUSTWORTHY SEED
We also consider the additional assumption that the distinguisher is given one trust-
worthy node as advice. In the full version, we show that we can obtain similar results
as Theorem 4.1 but with no limit on the number of sybil nodes (nor the doubling dimen-
sion). However, to take advantage of this advice, we will lose a fair bit in the trade-off
between the parameters of ρ and p—the fraction of nodes that are compromisable and
the fraction of edges present between honest nodes which are close in the underlying
latent space, respectively. Before we required that 1+ε

1−ερ < p, but in this case, we will
require 1+ε

1−ερ < p3.

6. EXPERIMENTS
We previously noted that our assumptions hold in many generative models, and gen-
eral versions of these assumptions are typically assumed to be true. We conducted sev-
eral experiments to evaluate and further study our specific assumptions in different
online communities and social networks.

In our main theorems, we assume the social network G can be embedded into a low
doubling dimension space M(G, d); that a large fraction of nodes forms a core space
with density ∆, that every node in the core space has at least ∆ nodes whose distance is
smaller than 3, and the edges between the node and nearby nodes form independently
with probability p. Collectively, we refer to this set of assumptions our low-dimension
assumption.

Note that because our low dimensional assumptions are stochastic in nature, we
cannot exactly test them empirically. Instead we will ensure that a node connects to
some p fraction of neighbors within distance 3 (rather than a random set of neighbors).

6.1. Dataset Description
Our experiments use all 4 social network data sets on Stanford Network Analysis
Project with between 4, 000 and 100, 000 nodes: this includes networks collected from
Facebook [McAuley and Leskovec 2012] and Twitter [McAuley and Leskovec 2012]
as well as the Wikipedia voting network [Leskovec et al. 2010] and the Epinion net-
work [Richardson et al. 2003].

The data sets are more completely described in the full version, but we summarize
the basic statistics of the network data sets we used in Table I.

Social network Facebook Wiki-vote Twitter Epinion
Nodes 4,039 7,115 81,306 75,879
Edges 88,234 103,689 1,768,149 508,837
Average degree 21.85 14.57 21.75 6.70
Nodes in 6-core 3,478 3,343 58,787 13,911
Edges in 6-core 86,492 94,179 1279,919 303,324

Table I: Data set statistics

6.2. Implementation Details
To test the low-degree assumption on each network we used spectral embedding tech-
niques to embed the 6-core of the graph into Rd, and then measured the core-fraction
of the resulting metric graph as follows: for given parameters r, p, and ∆, we first re-
moved all nodes in the 6-core that either a) did not have ∆ nodes within distance r, or
b) were not neighbors with a p fraction of the nodes within distance r. We then created



a graph of the remaining nodes by connecting those within distance r. We output the
size of the largest component divided by the size of the 6-core, the core-fraction.

We additionally, randomly “rewired” the 6-core of each graph and again embedded
that into Rd, and then measured properties of the resulting metric graphs.

In the full version, we give additional details and explanations for the above proce-
dures.

6.3. Experimental Results

(a) Facebook (b) Wikipedia

(c) Twitter (d) Epinion

Fig. 1: The relation between fraction of core space to graph under required fraction of
neighbors among close nodes and in different dimensions.

The results with ∆ = 10, 0 < p < 0.2, and d = 2, 3, 4, and 5 (recall d is the dimension
of the embedding) are shown in Figure 1. We generally found that there is a large
fraction of nodes in core space, with the Twitter and Facebook networks embedding
more effectively than E-pinions or Wikipedia. This is promising because these data
sets are the closest to traditional social networks.

Note that the charts only show the fraction of the 6-core in the core. Table I addi-
tionally shows the fraction of the nodes in the 6-core, which averages around 50% but
varies greatly between datasets. For example, even when we required that a core node
be connected to 20% of the close nodes in the Facebook data set, about 22% of the 6-
core nodes remained in the core. Because in this dataset over 86% of the nodes are in
the 6-core, this means that about 19% of the nodes are in the core. If we only require



that a core node be connected to 10% of the close nodes, then the overall fraction of
core nodes jumps to 34%.

The exception was the E-pinions network. In this network, even when we only re-
quired a core node be connected to 5% of the close nodes only 12% of the 6-core re-
mained in the core. Also, unique to this network is that the 6-core only represented
about 18% of the nodes. So at this point only 2% of the nodes are in the core. While we
cannot definitively say, we postulate that one reason for this failure is the low average
degree of the E-pinion network, which is less than half of any other network. Addition-
ally, we note that even though the numbers are small, the faction of nodes in the core
of the E-pinions network is still a factor of 10 greater than in the rewired E-pinions
network.

The dimension for which we embedded a network seemed not to make a systematic
difference, though it seemed like slightly larger dimensions were more effective in
Twitter and Facebook.

In the rewiring setting, the experiments show that the embeddings of the rewired
networks do not do as well placing neighbors close by. This indicates that the link
structure in original networks contains features that the rewired networks do not. In
particular, the core-fraction of the rewired networks when p = 0.2 was about 0.46% in
Facebook, 2.2% in Wikipedia, 0.01% in Twitter, and 0.39% in E-pinion.

7. FUTURE WORK
Our work has several limitations that we hope can be addressed in future work. First,
there exist cases where Lemma 4.3 fails for only a single node, yet the adversary can
add arbitrarily many sybils. Ideally the performance would degrade more gracefully.
Second, this fact implies that our techniques require p∆, the number of local ties,
to grow with the natural log of the number of vertices, which, in practice, requires
a fairly dense network. If p∆ is a small constant, then for large enough networks,
Theorem 4.1 is vacuously true. Improvements by probabilistic analysis (e.g. chaining
instead of union bound) seem limited. Rather, a new detection algorithm is required
for this setting.

Additionally, we assume that the metric is known, but future work could relax this
assumption. While several results (e.g. [Abraham et al. 2013; Backstrom, Sun, and
Marlow Backstrom et al.; Clauset et al. 2008; Handcock et al. 2007; Hoff et al. 2002;
Kermarrec et al. 2011; Krivitsky et al. 2009; Raftery et al. 2012; Sarkar et al. 2011;
Sarkar and Moore 2005]) reconstruct latent spaces given a network, it is not clear if
they can do this reliably in the presence of sybil nodes. However, the nodes may have
attributes that can be leveraged to this end.

One direction for improvement in practice, is to attempt to detect which nodes are
compromisable. This seems plausible since the adversary must already do this (or risk
their sybils having many rejected tie requests—a tell-tail sign [Yang et al. 2014]).

Another direction for future work is to extend a core idea of this paper—that while
sybil nodes can connect to many neighbors, they cannot necessary connect to the cor-
rect combination of neighbors—to other network models, for example networks with
discrete community structures.
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