
The Computational Complexity of Nash Equilibria in
Concisely Represented Games ∗

Grant Schoenebeck
†

Computer Science Division
University of California, Berkeley

Berkeley, California 94720

grant@cs.berkeley.edu

Salil Vadhan
‡

Division of Engineering & Applied Sciences
Harvard University

Cambridge, MA 02138

salil@eecs.harvard.edu

ABSTRACT
Games may be represented in many different ways, and
different representations of games affect the complexity of
problems associated with games, such as finding a Nash
equilibrium. The traditional method of representing a game
is to explicitly list all the payoffs, but this incurs an expo-
nential blowup as the number of agents grows.

We study two models of concisely represented games: cir-
cuit games, where the payoffs are computed by a given boolean
circuit, and graph games, where each agent’s payoff is a func-
tion of only the strategies played by its neighbors in a given
graph. For these two models, we study the complexity of
four questions: determining if a given strategy is a Nash
equilibrium, finding a Nash equilibrium, determining if there
exists a pure Nash equilibrium, and determining if there ex-
ists a Nash equilibrium in which the payoffs to the players
meet some given guarantees. In many cases, we obtain tight
results, showing that the problems are complete for various
complexity classes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Theory, Economics

∗Many of these results have appeared in the first author’s
undergraduate thesis [20]. A preliminary version of this pa-
per has appeared on ECCC [19].
†Supported by NSF grant CCR-0133096.
‡Work done in part while a Fellow at the Radcliffe Institute
for Advanced Study. Also supported by NSF grant CCR-
0133096 and a Sloan Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’06, June 11–15, 2006, Ann Arbor, Michigan.
Copyright 2006 ACM 1-59593-236-4/06/0006 ...$5.00.

Keywords
Nash equilibrium, concise games, graph games, circuit games,
computational game theory

1. INTRODUCTION
A central topic at the interface of computer science and

economics is understanding the complexity of computational
problems involving equilibria in games. While these types
of questions are already interesting (and often difficult) for
standard two-player games presented in “bimatrix form” [16,
3, 9, 15], many of the current motivations for such games
come from settings where there are many players (e.g. the
Internet) or many strategies (e.g. combinatorial auctions).
In n-player games and in games with many strategies, the
representation of the game becomes an important issue. In
particular, explicitly describing an n-player game in which
each player has only two strategies requires an exponentially
long representation (consisting of N = n · 2n payoff values).
Thus the complexity of this problem is more natural for
games given by some type of concise representation, such as
the graph games recently proposed by Kearns, Littman, and
Singh [14].

Motivated by the above considerations, we undertake a
systematic study of the complexity of Nash equilibria in
games given by concise representations. We focus on two
types of concise representations. The first are circuit games,
where the game is specified by a boolean circuit comput-
ing the payoffs. Circuit games were previously studied in
the setting of two-player zero-sum games, where computing
(resp., approximating) the “value” of such a game is shown
to be EXP-complete [7] (resp., S2P-complete [8]). They are
a very general model, capturing essentially any representa-
tion in which the payoffs are efficiently computable. The
second are graph games [14], where the game is presented
by a graph whose nodes are the players and the payoffs of
each player are a function only of the strategies played by
each player’s neighbor. (Thus, if the graph is of low de-
gree, the payoff functions can be written very compactly).
Kearns et al. showed that if the graph is a tree and each
player has only two strategies, then approximate Nash equi-
libria can be found in polynomial time. Gotlobb, Greco,
and Scarcello [12] recently showed that the problem of de-
ciding if a degree-4 graph game has a pure-Nash equilibrium
is NP-complete.

In these two models (circuit games and graph games), we
study 4 problems:

1. IsNash: Given a game G and a randomized strategy
profile θ, determine if θ is a Nash equilibrium in G,

2. ExistsPureNash: Given a game G, determine if G
has a pure (i.e. deterministic) Nash equilibrium,

3. FindNash: Given a game G, find a Nash equilibrium
in G, and

4. GuaranteeNash: Given a game G, determine whether
G has a Nash equilibrium that achieves certain payoff
guarantees for each player. (This problem was pre-
viously studied by [9, 3], who showed it to be NP-
complete for two-player, bimatrix games.)

We study the above four problems in both circuit games and
graphical games, in games where each player has only two
possible strategies and in games where the strategy space is
unbounded, in n-player games and in 2-player games, and
with respect to approximate Nash equilibria for different
levels of approximation (exponentially small error, polyno-
mially small error, and constant error).

Our results include:

• A tight characterization of the complexity of all of the
problems listed above except for FindNash, by show-
ing them to be complete for various complexity classes.
This applies to all of their variants (w.r.t. concise rep-
resentation, number of players, and level of approxi-
mation). For the various forms of FindNash, we give
upper and lower bounds that are within one nondeter-
ministic quantifier of each other.

• A general result showing that n-player circuit games in
which each player has 2 strategies are a harder class of
games than standard two-player bimatrix games (and
more generally, than the graphical games of [14]), in
that there is a general reduction from the latter to the
former which applies to most of the problems listed
above.

Independent/Subsequent Results. Several researchers have
independently obtained some results related to ours. Specif-
ically, Daskalakis and Papadimitriou [5] give complexity re-
sults on concisely represented graphical games where the
graph can be exponentially large (whereas we always con-
sider the graph to be given explicitly), and Alvarez, Gabarro,
and Serna [AGS05] give results on ExistsPureNash that
are very similar to ours.

In addition, there have been several important related re-
sults subsequent to the original versions of our work [20,
19]. In particular, Goldberg and Papadimitriou [10] give a
reduction from degree-d graph games to d2-player normal-
form games.1 Their reduction uses a technique similar to one
in the original version of this paper [19]. Furthermore, [10]
gives a reduction from d-player games to degree-3 boolean
graph games, strengthening our second bullet above. Each
of these reductions creates a natural map between Nash
equilibrium. By composing these reductions, they show that
for any constant C, the problem of finding a Nash equi-
librium in a game with at most C players, referred to as
C-Nash, can be reduced to the case where C = 4, 4-Nash.

1A normal-form game is one where the payoffs are explicitly
specified for each possible combination player strategies.

Subsequently, with Daskalakis [4], they prove that for C ≥ 4
C-Nash is complete for the class PPAD [16]. Daskalakis
and Papadimitriou [6] and Chen and Deng [1] independently
prove the same result holds for C = 3. Chen and Deng [2]
have now proved the same result holds even for C = 2.

Organization. We define game theoretic terminology and
fix a representation of strategy profiles in Section 2. Sec-
tion 3 contains formal definitions of the concise representa-
tions and problems that we study. Section 4 looks at rela-
tionships between these representations. Sections 5 through
8 contain the main complexity results on IsNash, Exist-

sPureNash, FindNash, and GuaranteeNash.
Due to space constraints, many proof are omitted.

2. BACKGROUND AND CONVENTIONS

Game Theory. A game G = (s, ν) with n agents, or play-
ers, consists of a set s = s1 × · · · × sn where si is the
strategy space of agent i, and a valuation or payoff function
ν = ν1 × . . .× νn where νi : s → R is the valuation function
of agent i. Intuitively, to “play” such a game, each agent i
picks a strategy si ∈ si, and based on all players’ choices
realizes the payoff νi(s1, . . . , sn).

For us, si will always be finite and the range of νi will
always be rational. An explicit representation of a game
G = (s, ν) is composed of a list of each si and an ex-
plicit encoding of each νi. This encoding of ν consists of
n · |s| = n · |s1| · · · |sn| rational numbers. An explicit game
with exactly two players is call a bimatrix game because the
payoff functions can be represented by two matrices, one
specifying the values of ν1 on s = s1 × s2 and the other
specifying the values of ν2.

A pure strategy for an agent i is an element of si. A
mixed strategy θi, or simply a strategy, for a player i is a ran-
dom variable whose range is si. The set of all strategies for
player i will be denoted Θi. A strategy profile is a sequence
θ = (θ1, . . . , θn), where θi is a strategy for agent i. We will
denote the set of all strategy profiles Θ. ν = ν1 × · · · × νn

extends to Θ by defining ν(θ) = Es←θ[ν(s)]. A pure-strategy
profile is a strategy profile in which each agent plays some
pure-strategy with probability 1. A k-uniform strategy pro-
file is a strategy profile where each agent randomizes uni-
formly between k, not necessarily unique, pure strategies.
The support of a strategy (or of a strategy profile) is the set
of all pure-strategies (or of all pure-strategy profiles) played
with nonzero probability.

We define a function Ri : Θ × Θi → Θ that replaces the
ith strategy in a strategy profile θ by a different strategy
for agent i, so Ri(θ, θ′i) = (θ1, . . . , θ

′
i, . . . , θn). This diverges

from conventional notation which writes (θ−i, θ
′
i) instead of

Ri(θ, θ′i).
Given a strategy profile θ, we say agent i is in equilib-

rium if he cannot increase his expected payoff by playing
some other strategy (giving what the other n − 1 agents
are playing). Formally agent i is in equilibrium if νi(θ) ≥
νi(Ri(θ, θ′i)) for all θ′i ∈ Θi. Because Ri(θ, θ′i) is a distribu-
tion over Ri(θ, si) where si ∈ si and νi acts linearly on these
distributions, Ri(θ, θ′i) will be maximized by playing some
optimal si ∈ si with probability 1. Therefore, it suffices to
check that νi(θ) ≥ νi(Ri(θ, si)) for all si ∈ si. For the same
reason, agent i is in equilibrium if and only if each strat-

egy in the support of θi is an optimal response. A strategy
profile θ is a Nash equilibrium [17] if all the players are in
equilibrium. Given a strategy profile θ, we say player i is
in ǫ-equilibrium if νi(Ri(θ, si)) ≤ νi(θ) + ǫ for all si ∈ si.
A strategy profile θ is an ǫ-Nash equilibrium if all the play-
ers are in ǫ-equilibrium. A pure-strategy Nash equilibrium
(respectively, a pure-strategy ǫ-Nash equilibrium) is a pure-
strategy profile which is a Nash equilibrium (respectively,
an ǫ-Nash equilibrium).

A two-player is called a zero-sum game if ν1(s) = −ν2(s)
for all s ∈ s. Each zero-sum game G has a game value ν(G)
such that in any Nash equilibrium θ, ν(G) = ν1(θ) = −ν2(θ).

Pennies is a 2-player game where s1 = s2 = {0, 1}, and
ν1(s1, s2) = 1 if s1 = s2 and 0 otherwise. ν2(s1, s2) = 1 if
s1 6= s2 and 0 otherwise.

Pennies has a unique Nash equilibrium where both agents
randomize uniformly between their two strategies. In any
ǫ-Nash equilibrium of 2-player pennies, each player random-
izes between each strategy with probability 1

2
± 2ǫ.

Complexity Theory. A promise-language L is a pair (L+, L−)
such that L+ ⊆ Σ∗, L− ⊆ Σ∗, and L+ ∩ L− = ∅. We call
L+ the positive instances, and L− the negative instances.
An algorithm decides a promise-language if it accepts all
the positive instances and rejects all the negative instances.
Nothing is required of the algorithm if it is run on instances
outside L+ ∪ L−.

Because we consider approximation problems in this pa-
per, which are naturally formulated as promise languages,
all complexity classes used in this paper are classes
of promise languages. We refer the reader to the recent
survey of Goldreich [11] for about the usefulness and sub-
tleties of working with promise problems.

P

BPP

S2P

BPP
NP

P
#P

EXP

NP

MA = NP
BPP

Σ2P

NP
#P

NEXP

coNP

coMA = coNP
BPP

Π2P

coNP
#P

coNEXP

Tractable

Intractable

Figure 1: Relationships between complexity classes

Figure 1 shows the relationships between the complexity
classes used in this paper. If a line connects two complexity
classes in the figure, it indicates that the class lower on the
page is contained in the complexity class higher on the page.
EXP and NEXP are the classes of languages that can be
decided in exponential time and nondeterministic exponen-
tial time, respectively. Both of these classes are provably
not equal to P. #P is the class of NP counting functions.
Functions in these class answer how many accepting compu-
tations a nondeterministic polynomial-time Turing machine

has (rather than if one accepting computation exists, like
NP). While #P contains NP, #P is generally thought
to also contain much harder problems than NP. BPP is
the class of languages that can be computed with by a ran-
domized algorithm with two-sided error in polynomial time.
BPP is generally considered a class of tractable problems.
P̃, called quasipolynomial time, contains languages that can
be deterministically decided in time 2poly(log(|x|)) on input
x. P̃, usually considered nearly tractable, clearly contains
P and is contained by EXP. A promise language L is in
S2P if there exists a polynomial time computable and poly-
nomially bounded relation R ⊂ Σ∗ × Σ∗ × Σ∗ such that:

1. If x ∈ L+ then ∃ y such that ∀ z, R(x, y, z) = 1.

2. If x ∈ L− then ∃ z such that ∀ y, R(x, y, z) = 0.

If C and D are two complexity classes then the complexity
class CD is the set of languages that can be decided in C
augmented by oracle access to any particular language in
D. For example, a language is in Σ2P = NPNP if it can
be decided by a nondeterministic polynomial-time Turning
machine with oracle access to SAT.

A search problem, is specified by a relation R ⊆ Σ∗ × Σ∗

where given an x ∈ Σ∗ we want to either compute y ∈ Σ∗

such that (x, y) ∈ R or say that no such y exists. When
using a search problem as an oracle, it is required that any
valid response from the oracle yields a correct answer.

3. CONCISE REPRESENTATIONS
AND PROBLEMS STUDIED

We now give formal descriptions of the problems which
we are studying. First we define the two different represen-
tations of games.

Definition 3.1. A circuit game is a game G = (s, ν)
specified by integers k1, . . . , kn and circuits C1, . . . , Cn such
that si ⊆ {0, 1}ki and Ci(s) = νi(s) if si ∈ si for all i or
Ci(s) = ⊥ otherwise.

In a game G = (s, ν), we write i ∝ j if ∃s ∈ s, s′i ∈ si

such that νj(s) 6= νj(Ri(s, s
′
i)). Intuitively, i ∝ j if agent i

can ever influence the payoff of agent j.

Definition 3.2. [14] A graph game is a game G = (s, ν)
specified by a directed graph G = (V, E) where V is the set
of agents and E ⊇ {(i, j) : i ∝ j}, the strategy space s, and
explicit representations of the function νj for each agent j
defined on the domain

Q
(i,j)∈E

si, which encodes the pay-

offs. A degree-d graph game is a graph game where the
in-degree of the graph G is bounded by d.

This definition was proposed in [14]. We change their defi-
nition slightly by using directed graphs instead of undirected
ones (this only changes the constant degree bounds claimed
in our results).

Note that any game (with rational payoffs) can be rep-
resented as a circuit game or a graph game. However, a
degree-d graph game can only represent games where no one
agent is influenced directly by the strategies of more than d
other agents.

A circuit game can encode the games where each player
has exponentially many pure-strategies in a polynomial amount
of space. In addition, unlike in an explicit representation,

there is no exponential blow-up as the number of agents in-
creases. A degree-d graph game, where d is constant, also
avoids the exponential blow-up as the number of agents in-
creases. For this reason we are interested mostly in bounded-
degree graph games.

We study two restrictions of games. In the first restric-
tion, we restrict a game to having only two players. In the
second restriction, we restrict each agent to having only two
strategies. We will refer to games that abide by the former
restriction as 2-player, and to games that abide by the latter
restriction as boolean.

If we want to find a Nash equilibrium, we need an agreed
upon manner in which to encode the result, which is a strat-
egy profile. We represent a strategy profile by enumerating,
by agent, each pure strategy in that agent’s support and the
probability with which the pure strategy is played. Each
probability is given as the quotient of two integers.

This representation works well in bimatrix games, because
the following proposition guarantees that for any 2-player
game there exists Nash equilibrium that can be encoded in
reasonable amount of space.

Proposition 3.3. Any 2-player game with rational pay-
offs has a rational Nash equilibrium where the probabilities
are of bit length polynomial with respect to the number of
strategies and bit-lengths of the payoffs. Furthermore, if we
restrict ourselves to Nash equilibria θ where νi(θ) ≥ gi for
i ∈ {1, 2} where each guarantee gi is a rational number then
either 1) there exists such a θ where the probabilities are of
bit length polynomial with respect to the number of strate-
gies and bit-lengths of the payoffs and the bit lengths of the
guarantees or 2) no such θ exists.

This proposition implies that for any bimatrix game there
exists a Nash equilibrium that is at most polynomially sized
with respect to the encoding of the game, and that for any
2-player circuit game there exists a Nash equilibrium that is
at most exponentially sized with respect to the encoding of
the game.

However, there exist 3-player games with rational payoffs
that have no Nash equilibrium with all rational probabilities
[18]. Therefore, we cannot hope to always find a Nash equi-
librium in this representation. Instead we will study ǫ-Nash
equilibrium when we are not restricted to 2-player games.
The following result from [15] states that there is always an
ǫ-Nash equilibrium that can be represented in a reasonable
amount of space.

Theorem 3.4. [15] Let θ be a Nash equilibrium for an n-
player game G = (s, ν) in which all the payoffs are between

0 and 1, and let k ≥ n2 log(n2 maxi |si|)

ǫ2
. Then there exists a

k-uniform ǫ-Nash equilibrium θ′ where |νi(θ) − νi(θ
′)| ≤ ǫ

2
for 1 ≤ i ≤ n.

Recall that a k-uniform strategy profile is a strategy pro-
file where each agent randomizes uniformly between k, not
necessarily unique, pure strategies. The number of bits
needed to represent such a strategy profile is O((

P
i
min{k, |si|})·

log k). Thus, Theorem 3.4 implies that for any that for any
n-player game (g1, . . . , gn) = (s, ν) in which all the pay-
offs are between 0 and 1, there exists an ǫ-Nash equilibrium
of bit-length poly(n, 1/ǫ, log(maxi |si|)). There also is an
ǫ-Nash equilibrium of bit-length poly(n, log(1/ǫ), maxi |si|).

We want to study the problems with and without approx-
imation. All the problems that we study will take as an
input a parameter ǫ related to the bound of approximation.
We define four types of approximation:

1a) Exact: Fix ǫ = 0 in the definition of the problem. 2

1b) Exp-Approx: input ǫ ≥ 0 as a rational number en-
coded as the quotient of two integers. 3

2) Poly-Approx: input ǫ > 0 as 1k where ǫ = 1/k

3) Const-Approx: Fix ǫ > 0 in the definition of the prob-
lem.

With all problems, we will look at only 3 types of approx-
imation. Either 1a) or 1b) and both 2 and 3. With many
of the problems we study, approximating using 1a) and 1b)
yields identical problems. Since the notion of ǫ-Nash equi-
librium is with respect to additive error, the above notions
of approximation refer only to games whose payoffs are be-
tween 0 and 1 (or are scaled to be such). Therefore we
assume that all games have payoffs which are be-
tween 0 and 1 unless otherwise explicitly stated. Many
times our constructions of games use payoffs which are not
between 0 and 1 for ease of presentation. In such a cases
the payoffs can be scaled.

Now we define the problems which we will examine.

Definition 3.5. For a fixed representation of games, Is-

Nash is the promise language defined as follows:

Positive instances: (G, θ, ǫ) such that G is a game given
in the specified representation, and θ is strategy profile
which is a Nash equilibrium for G.

Negative instances: (G, θ, ǫ) such that θ is a strategy
profile for G which is not an ǫ-Nash equilibrium.

Notice that when ǫ = 0 this is just the language of pairs
(G, θ) where θ is a Nash equilibrium of G.

The the definition of IsNash is only one of several natural
variations. Fortunately, the manner in which it is defined
does not affect our results and any reasonable definition will
suffice. For example, we could instead define IsNash where:

1. (G, θ, ǫ) a positive instance if θ is an ǫ/2-Nash equilib-
rium of G; negative instances as before.

2. (G, θ, ǫ, δ) is a positive instance if θ is an ǫ-Nash equi-
librium; (G, θ, ǫ, δ) is a negative instance if θ is not an
ǫ + δ-Nash equilibrium. δ is represented in the same
way as ǫ.

Similar modifications can be made to Definitions 3.6, 3.7,
and 3.9. The only result affected is the reduction in Corol-
lary 4.5.

2We use this type of approximation only when we are guar-
anteed to be dealing with rational Nash equilibrium. This
is the case in all games restricted to 2-players and when
solving problems relating to pure-strategy Nash equilibrium
such as determining if a pure-strategy profile is a Nash equi-
librium and determining if there exists a pure-strategy Nash
equilibrium.
3We will only consider this in the case where a rational Nash
equilibrium is not guaranteed to exist, namely in k-player
games for k ≥ 3 for the problems IsNash, FindNash, and
GuaranteeNash.

Definition 3.6. We define the promise language IsPure-

Nash to be the same as IsNash except we require that, in
both positive and negative instances, θ is a pure-strategy pro-
file.

Definition 3.7. For a fixed representation of games, Ex-

istsPureNash is the promise language defined as follows:

Positive instances: Pairs (G, ǫ) such that G is a game
in the specified representation in which there exists a
pure-strategy Nash equilibrium.

Negative instances: (G, ǫ) such that there is no pure-
strategy ǫ-Nash equilibrium in G.

Note that Exact ExistsPureNash is just a language
consisting of pairs of games with pure-strategy Nash equi-
libria.

Definition 3.8. For a given a representation of games,
the problem FindNash is a search problem where, given a
pair (G, ǫ) such that G is a game in a specified representa-
tion, a valid solution is any strategy-profile that is an ǫ-Nash
equilibrium in G.

As remarked above, when dealing with FindNash in games
with more than 2 players, we use Exp-Approx rather than
Exact. This error ensures the existence of some Nash equi-
librium in our representation of strategy profiles; there may
be no rational Nash equilibrium.

Definition 3.9. For a fixed representation of games, Guar-

anteeNash is the promise language defined as follows:

Positive instances: (G, ǫ, (g1, . . . , gn)) such that G is
a game in the specified representation in which there
exists a Nash equilibrium θ such that, for every agent
i, νi(θ) ≥ gi.

Negative instances: (G, ǫ, (g1, . . . , gn)) such that G is
a game in the specified representation in which there
exist no ǫ-Nash equilibrium θ such that, for every agent
i, νi(θ) ≥ gi − ǫ.

When we consider IsNash, FindNash, and GuaranteeNash

in k-player games, k > 2, we will not consider Exact, but
only the other three types: Exp-Approx, Poly-Approx,
and Const-Approx. The reason for this is that no ratio-
nal Nash equilibrium is guaranteed to exist in these cases,
and so we want to allow a small rounding error. With all
other problems we will not consider Exp-Approx, but only
the remaining three: Exact, Poly-Approx, and Const-

Approx.

4. RELATIONS BETWEEN CONCISE GAMES
We study two different concise representations of games:

circuit games and degree-d graph games; and two restric-
tions: two-player games and boolean-strategy games. It
does not make since to impose both of these restrictions
at the same time, because in two-player, boolean games all
the problems studied are trivial.

This leaves us with three variations of circuit games: cir-
cuit games, 2-player circuit games, and boolean circuit games.
Figure 2 shows the hierarchy of circuit games. A line drawn
between two types of games indicates that the game type

higher in the diagram is at least as hard as the game type
lower in the diagram in that we can efficiently reduce ques-
tions about Nash equilibria in the games of the lower type
to ones in games of the higher type. (One caveat is that
for 2-player circuit games we consider Exact but not Exp-

Approx, and for circuit games we consider Exp-Approx

but not Exact, and these models seem incomparable.)
This also leaves us with three variations of degree-d graph

games: degree-d graph games, 2-player degree-d graph games,
and boolean degree-d graph games. A 2-player degree-d
graph game is simply a bimatrix game (if d ≥ 2) so the hi-
erarchy of games is as shown in Figure 2. (Again, the same
caveat applies. For bimatrix games we consider Exact but
not Exp-Approx, and for graph games and boolean graph
games we consider Exp-Approx but not Exact, and these
models seem incomparable.)

It is easy to see that given a bimatrix game, we can always
efficiently construct an equivalent 2-player circuit game. It
is also possible to construct a log space reduction from graph
games of arbitrary degree to boolean circuit games, a result
which we will state presently in Theorem 4.1 and its corol-
laries. This gives us the relationship in Figure 2.

Circuit

Graph

Bimatrix Boolean
Graph

2-player
Circuit

Boolean
Circuit

Circuit

2-player
Circuit

Boolean
Circuit

Graph

Bimatrix Boolean
Graph

All GamesGraph Games

Circuit Games

Figure 2: Relationships between games

Theorem 4.1. Given an n-player graph game of arbi-
trary degree G = (G, s, ν), in logarithmic space, we can cre-
ate an n′-player Boolean circuit game G′ = (s′, ν′) where
n ≤ n′ ≤

Pn

i=1 |si| and a logarithmic space function f :
Θ → Θ′ and a polynomial time function g : Θ′ → Θ 4with
the following properties:

1. f and g map pure-strategy profiles to pure-strategy pro-
files.

2. f and g map rational strategy profiles to rational strat-
egy profiles.

3. g ◦ f is the identity map.

4. For each agent i in G there an agent i in G′ such that
for any strategy profile θ of G, νi(θ) = ν′i(f(θ)) and for
any strategy profile θ′ of G′, ν′i(θ

′) = νi(g(θ′)).

5. If θ′ is an ǫ-Nash equilibrium in G′ then g(θ′) is a
⌈log2 k⌉ · ǫ-Nash equilibrium in G where k = maxi |si|.

6. • For every θ ∈ Θ, θ is a Nash equilibrium if and
only if f(θ) is a Nash equilibrium.

4More formally, we specify f and g by constructing, in space
O(log(|G|)), a branching program for f and a circuit that
computes g.

• For every pure-strategy profile θ ∈ Θ, θ is an ǫ-
Nash equilibrium if and only if f(θ) is and ǫ-Nash
equilibrium.

Proof Sketch: We briefly sketch the mapping of G to
G′. Given a graph game G, to construct G′, we create a
binary tree ti of depth log |si| for each agent i, with the
elements of si at the leaves of the tree. Each internal node
in ti represents an agent in G′. The strategy space of each
of these agents is {left, right}, each corresponding to the
choice of a subtree under his node.

The strategy of each agent in ti “points” to another agent
or strategy (the root of the right or left subtree) further
down in the tree ti. By following the paths induced by
these points, each node in the tree ti can be associated with
some leaf at the bottom of the tree ti and, therefore, with
some strategy si ∈ si from the game G. Let s be such that
sj is the strategy associated with the agent at the root of
tj . Then we define the payoff of an agent i′ in ti to be
ν′i′ = νi(Ri(s, s

′
i)) where s′i is the strategy associated with

agent i′. 2

Corollary 4.2. There exist boolean games without ra-
tional Nash equilibria.

Corollary 4.3. With Exp-Approx and Poly-Approx,
there is a log space reduction from graph game ExistsPure-

Nash to boolean circuit game ExistsPureNash

We do not mention IsNash or IsPureNash because they
are in P for graph games (see Section 5.)

Corollary 4.4. With Exp-Approx and Poly-Approx,
there is a log space reduction from graph game FindNash to
boolean circuit game FindNash.

Corollary 4.5. With Exp-Approx and Poly-Approx,
there is a log space reduction from graph game Guaran-

teeNash to boolean circuit game GuaranteeNash.

The new results in [10] change things slightly. This result
gives a polynomial-time reduction from Exact and Exp-

Approx FindNash in degree-d graph games to degree-3
boolean graph games as long as d is constant.

5. ISNASH AND ISPURENASH

In this section, we study the problem of determining whether
a given strategy profile is a Nash equilibrium. Studying this
problem will also help in studying the complexity of other
problems.

5.1 IsNash

A summary of the results for IsNash is shown in Figure 3.
The various complexity classes are described in Section 2
under the heading of Complexity Theory.

Notice that with Poly-Approx and Const-Approx every-
thing works much as with Exp-Approx and Exact, but
#P, counting, is replaced by BPP, approximate counting.

IsNash is in P for all graph games. When allowing ar-
bitrarily many players in a boolean circuit game, IsNash

becomes P#P-complete (via Cook reductions). When al-
lowing exponentially many strategies in a 2-player circuit
game, it becomes coNP-complete. IsNash for a generic
circuit game combines the hardness of these 2 cases and is
coNP#P-complete.

Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

Exact or Exp-Approx

Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

Poly-Approx and Const-Approx

in
�����-

complete

���� -complete

�� ���� -complete

�������-
complete

���
-complete

in
�

�
-complete

��
Figure 3: Summary of IsNash Results

Proposition 5.1. In all approximation schemes, graph
game IsNash is in P.

Proposition 5.2. In all approximation schemes, 2-player
circuit game IsNash is coNP-complete. Furthermore, it re-
mains in coNP for any constant number of players, and it
remains hard as long as approximation error ǫ < 1.

In the previous proof, we obtain the hardness result by
making one player choose between many different strategies,
and thus making him assert something about the evaluation
of each strategy. We will continue to use similar tricks ex-
cept that we will often have to be more clever to get many
strategies. Randomness provides one way of doing this.

Theorem 5.3. Boolean circuit game Exp-Approx IsNash

is P#P-complete via Cook reductions.

Proof Sketch: We show here that it is P#P-hard. We
reduce from MajoritySat, which is P#P-complete under
Cook reductions. A circuit C belongs to MajoritySat if it
evaluates to 1 on at least half of its inputs.

Given a circuit C with n inputs (without loss of generality,
n is even), we construct an (n + 1)-player boolean circuit
game. The payoff to agent 1 if he plays 0 is 1

2
, and if he plays

1 is the output of the circuit, C(s2, . . . , sn+1), where si is
the strategy of agent i. The payoffs of the other agents are
determined by a game of pennies (for details see Section 2)
in which agent i plays against agent i + 1 where i is even.

Let ǫ = 1/2n+1, and let θ be a mixed strategy profile
where Pr[θ1 = 1] = 1, and Pr[θi = 1] = 1

2
for i > 1. It

can be verified that θ is a Nash equilibrium if and only if
C ∈MajoritySat. 2

Theorem 5.4. Circuit game Exp-Approx IsNash is
coNP#P-complete.

Even if we allow just one agent in a boolean circuit game
to have arbitrarily many strategies, then the problem be-
comes coNP#P-complete.

We now look at the problem when dealing with Poly-

Approx and Const-Approx.

Theorem 5.5. With Poly-Approx and Const-Approx,
boolean circuit game IsNash is BPP-complete.5 Further-
more, this holds for any approximation error ǫ < 1.

5Recall that all our complexity classes are promise classes,
so this is really prBPP.

Proof Sketch: Boolean circuit game IsNash with polyno-
mially small approximation is in BPP because given an in-
stance (G, θ, ǫ), for each agent i and each strategy si ∈ {0, 1}
we can use random sampling to distinguish the following
two possibilities in probabilistic polynomial time: whether
νi(θ) ≥ νi(Ri(θ, si)) or νi(θ) + ǫ < νi(Ri(θ, si)).

The hardness result is very similar to the proof in The-
orem 5.3. The key difference is that here we reduce from
the BPP-complete promise language of deciding if a given
a circuit C accepts fewer than 1/3 or more than 2/3 of its
inputs. 2

Theorem 5.6. With Poly-Approx and Const-Approx,
circuit game IsNash is coNPBPP = coMA-complete. Fur-
thermore, this holds for any approximation error ǫ < 1.

Note that when approximating IsNash, it never made a
difference whether we approximated by a polynomially small
amount or by any constant amount less than 1.

5.2 IsPureNash

In this section we will study a similar problem: IsPure-

Nash. In the case of non-boolean circuit games, IsPure-

Nash is coNP-complete. With the other games examined,
IsPureNash is in P.

Proposition 5.7. With any approximation scheme, cir-
cuit game and 2-player circuit game IsPureNash is coNP-
complete. Furthermore, it remains hard for any approxima-
tion error ǫ < 1.

Proposition 5.8. With any approximation scheme, Boolean
circuit game IsPureNash is P-complete, and remains so
even for one player and any approximation error ǫ < 1.

Proposition 5.9. With any approximation scheme, graph
game IsPureNash is in P for any kind of graph game.

6. EXISTENCE OF PURE-STRATEGY
NASH EQUILIBRIA

We now will use the previous relationships to study the
complexity of ExistsPureNash. Figure 4 gives a summary
of the results.

Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

All approximation schemes

in � ��-complete

� � –
complete
	

Figure 4: Summary of ExistsPureNash Results

The hardness of these problems is directly related to the
hardness of IsPureNash. We can always solve ExistsPure-

Nash with one more non-deterministic alternation because
we can nondeterministically guess a pure-strategy Nash equi-
librium, and then check that it is correct. Recall that in the
case of non-boolean circuit games, IsPureNash is coNP-
complete. With the other games examined, IsPureNash is

in P (but is only proven to be P-hard in the case of boolean
circuit games; see Subsection 5.2). As shown in Figure 4,
with the exception of bimatrix games, this strategy of non-
deterministically guessing and then checking is the best that
one can do.

We first note that ExistsPureNash is an exceedingly
easy problem in the bimatrix case because we can enumerate
over all the possible pure-strategy profiles and check whether
they are Nash equilibria.

ExistsPureNash is interesting because it is a language
related to the Nash equilibrium of bimatrix games that is not
NP-complete. One particular approach to the complexity
of finding a Nash equilibrium is to turn the problem into a
language. Both [9] and [3] show that just about any reason-
able language that one can create involving Nash equilib-
rium in bimatrix games is NP-complete; however, Exist-

sPureNash is a notable exception. Our results show that
this phenomenon does not extend to concisely represented
games.

Theorem 6.1. Circuit game ExistsPureNash and 2-player
circuit game ExistsPureNash are Σ2P-complete with any
of the defined notions of approximation. Furthermore, it re-
mains hard as long as approximation error ǫ < 1.

For graph games, it was recently shown by Gottlob, Greco,
and Scarcello [12] that ExistsPureNash is NP-complete,
even restricted to graphs of degree 4. Below we strengthen
their result by showing this also holds for boolean graph
games, for graphs of degree 3, and for any approximation
error ǫ < 1.

Theorem 6.2. For boolean circuit games, graph games,
and boolean graph games using any of the defined notions of
approximation ExistsPureNash is NP-complete. More-
over, the hardness result holds even for degree-d boolean
graph games for any d ≥ 3 and for any approximation error
ǫ < 1.

Proof Sketch: Here, to show the hardness result, we
reduce from CircuitSat which is NP-complete. Given a
circuit C (without loss of generality every gate in C has total
degree ≤ 3; we allow unary gates), we design the following
game: For each input of C and for each gate in C, we create
player with the strategy space {true, false}. We call these
the input agents and gate agents respectively, and call the
agent associated with the output gate the judge. We also
create two additional agents P1 and P2 with strategy space
{0, 1}.

We now define the payoffs. Each input agent is rewarded
1 regardless. Each gate agent is rewarded 1 for correctly
computing the value of his gate and is rewarded 0 otherwise.

If the judge plays true then the payoffs to P1 and P2 are
always 1. If the judge plays false then the payoffs to P1

and P2 are the same as the game pennies–P1 acting as the
first player, P2 as the second.

It is now straightforward to check that a pure strategy
Nash equilibria exists if and only if C is satisfiable. 2

The first thing to notice is that like IsPureNash this
problem does not become easier with approximation, even
if we allow as much approximation as possible without the
problem becoming trivial. Also, similarly to IsPureNash,
any reasonable definition of approximation would yield the
same results.

7. FINDING NASH EQUILIBRIA
Perhaps the most well-studied of these problems is the

complexity of finding a Nash equilibria in a game. In the
bimatrix case FindNash is known to be P-hard but unlikely
to be NP-hard. There is something elusive in categorizing
the complexity of finding something we know is there. Such
problems, including finding Nash equilibrium, are studied
by [16].

Recently, [15] showed that if we allow constant error, the

bimatrix case FindNash is in quasipolynomial time (i.e. P̃).
The results are summarized in Figure 5.

�
in

�
with constant error is
in

�
Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

Exact or Exp-Approx

Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

Poly-Approx and Const-Approx

�
-hard
�

in
�

��
-hard
��

in
� �

-hard

��
�
in

� ����
-hard
��

in
� � �

-hard

�

�
 in

�� ��

���
-hard ��
�

in
� � �����

-hard
�
in

�
Figure 5: Summary of FindNash Results

In all types of games, there remains a gap of knowledge of
less than one alternation. This comes about because to find
a Nash equilibrium we can simply guess a strategy profile
and then check whether it is a Nash equilibrium. It turns out
that in all the types of games, the hardness of FindNash

is at least as hard as IsNash (although we do not have
a generic reduction between the two). Circuit game and
2-player circuit game Poly-Approx and Const-Approx

FindNash are the only cases where the gap in knowledge is
less than one alternation. Subsequent to our work, it was
shown in [4] that, in graph game and boolean graph games,
Exact and Exp-Approx FindNash are complete for the
class PPAD. Also, subsequent to our work, it was shown
in [2] that the same is true for bimatrix games.

In a circuit game, there may be exponentially many strate-
gies in the support of a Nash equilibrium or the bit length of
the probability that a particular strategy is played may be
exponentially large. In either case, it would take exponen-
tially long just to write down a Nash equilibrium. In order
to avoid this problem, when we are not assured the existence
of a polynomially sized Nash equilibrium (or ǫ-Nash equilib-
rium), we will prove hardness results not with FindNash,
but with FindNashSimple. FindNashSimple is an easier
promise language version of FindNash that always has a
short answer.

Definition 7.1. For a fixed representation of games, Find-

NashSimple is the promise language defined as follows:

Positive instances: (G, i, si, k, ǫ) such that G is a game
given in the specified representation, and in every ǫ-
Nash equilibrium θ of G, Pr[θi = si] ≥ k.

Negative instances: (G, i, si, k, ǫ) such that G is a game

given in the specified representation, and in every ǫ-
Nash equilibrium θ of G, Pr[θi = si] < k.

FindNashSimple is easier than FindNash in that a Find-

Nash algorithm can be used to obtain FindNashSimple al-
gorithm of similar complexity, but the converse is not clear.

Theorem 7.2. 2-player circuit game Exact FindNash-

Simple is EXP-hard, but can be computed in polynomial
time with an NEXP oracle. However, if it is NEXP-hard,
it implies that NEXP is closed under complement.

Theorem 7.3. Circuit game Exp-Approx FindNashSim-

ple is EXP-hard, but is in NEXP. However, if it is NEXP-
hard, it implies that NEXP is closed under complement.
The EXP-hardness holds even for circuit games with 6 play-
ers.

Proof Sketch: We show here that circuit game Exp-

Approx FindNashSimple is EXP-hard. We reduce from
SuccinctCircuitValue. Given a succinctly represented
circuit C, we construct an instance of FindNashSimple

based upon a 6-player game G = (s, ν).
Let G be the set of gates in C and let N = |G|. We

create 3 computing agents: c1, c2, and c3; and we create
3 enforcing agents: e1, e2, and e3. Each computing agent
has the strategy set sci

= {g, ḡ : g ∈ G}. Each enforcing
agent has the strategy set sei

= {g : g ∈ G}. The payoffs
are designed so that in any ǫ-Nash equilibrium the enforcing
agent ei forces the computing agent ci to play g or ḡ (for
each g ∈ G) with probability at least 1/N − ǫ. In addition,
the payoff of computing agent ci is designed so that, if the
other two computing agents play strategies associated to
the input gates of the gate associated with the strategy of
ci, agent ci is penalized for playing the incorrect output of
the gate (using the strategies of the other computing agents
as inputs).

We can then show inductively that in any ǫ-Nash equilib-
rium θ, no agent ci plays a strategy corresponding to the
incorrect evaluation of a gate with probability greater than
2ǫ.

Given this, we can solve an instance of SuccinctCircuit-

Value on an instance C by querying FindNashSimple on
the instance (G, c1, o, 2ǫ, ǫ), where o is the output gate, and
returning the same answer. 2

A technique similar to this proof was used in [10] to show
a reduction from degree-d graph games to d2 player normal
form games. The basic idea is as follows, given a degree-d
graph game G, color the vertices of the graph corresponding
to G so that no vertex has two neighbors of the same color
(this requires at most d2 colors). Now create a computing
agent and an enforcing agent for each color. Similar to the
above construction, each enforcing agent forces the corre-
sponding computing agent to nearly uniformly randomize
between the strategies spaces of each player associated with
his color in the graph game.

Circuit game FindNash become easier when we approxi-
mate. The main reason is that now, by Theorem 3.4, there
always exists a Nash equilibrium with a polynomially sized
support. Thus we can guess an ǫ-Nash equilibrium and,
using a result like IsNash, test that it is such. Unlike the
exponential case, here the complexity is at most one alterna-
tion more than the complexity of the corresponding IsNash

problem.

Theorem 7.4. Circuit game and 2-player circuit game
Poly-Approx and Const-Approx FindNash are S2P-hard
but can be computed by a polynomial-time algorithm with ac-
cess to a Σ2P oracle.

This hardness result, as well as that of Theorem 7.2, is
based on a reduction to GameValue, which is known to be
EXP-complete [7] to compute exactly and S2P-complete to
approximate. The next two hardness results use a different
general approach, the hardness of IsNash.

Unlike ExistsPureNash, FindNash is a lot harder in
boolean circuit games than in graph games. This is because
of the hardness of IsNash in boolean circuit games.

Theorem 7.5. Boolean circuit game Exp-Approx Find-

Nash is P#P-hard via cook reductions but can be computed
in polynomial time given an NP#P oracle.

Proof. It is in NP#P because there always exists a poly-
nomial length solution, and by Theorem 5.3 we can verify a
solution in #P. The hardness result is very similar to that
of Theorem 5.3. Given a circuit C with n inputs, we build
a similar n + 1 player game that offers agent 1 a choice of
payment of 1

2
−1/2n+1 or the output of the circuit. For suf-

ficiently small ǫ, if the circuit evaluates to true a majority
of the time, agent 1 must choose the output of the circuit
with high probability.

In the previous result, the hardness comes from the hard-
ness of IsNash, so it is not surprising that boolean circuit
game FindNash becomes easier when we introduce approx-
imation.

Theorem 7.6. Boolean circuit game Poly-Approx and
Const-Approx FindNash are BPP-hard, but can be com-
puted in polynomial time with an oracle to NPBPP = MA.

Proof Sketch: It is in NPBPP because there exists a
solution with a polynomial length description, and by The-
orem 5.5 the validity of any solution can be check in BPP.

We create the same game as in the reduction of Theo-
rem 5.5, but with two differences: First, instead of creating
|r|-players (where r is the randomness required) that play
pennies against each other, we create 2k · |r| such players for
some polynomially large k that we will specify later. Sec-
ondly, when we calculate the payoff to the first player for
choosing the circuit, we obtain an input to the circuit by
taking XORs of the bits played by |r| disjoint subsets of the
remaining players, of size k each.

Now because the 2k · |r| remaining players must play a
ǫ-Nash equilibrium, they must randomize over their inputs
so that they play 0 with probability ∈ [1/2 − 2ǫ, 1/2 + 2ǫ].
The bits from the strategies of these players are fully inde-
pendent, so by XORing we get a string of |r| bits that is
exponentially close to uniform.

The payoff to agent 1 for playing ∅ is 1
2
, but the payoff

for choosing the circuit will by exponentially close to the
probability that a random input satisfies the circuit. 2

Finally, we show the complexity for graph games.

Theorem 7.7. With any type of approximation, graph
game and boolean graph game FindNash can be computed
in polynomial time with access to an NP oracle, but neither
is NP-hard unless NP = coNP. Furthermore, graph game
and boolean graph game FindNash are P-hard, even when
restricted to boolean graphs of degree ≥ 3.

8. EXISTENCE OF NASH EQUILIBRIA
WITH GUARANTEED PROPERTIES

Because FindNash is a search problem where a solution
is guaranteed to exist, it is hard to define a nontrivial lan-
guage from it. It is possible to create languages from Find-

Nash by adding additional constraints on the equilibrium.
For example: does there exists a Nash equilibrium where
each player is paid at least x amount? does there exists
a Nash equilibrium with social welfare x? or does there
exists a Nash equilibrium in which player 1 does not play
some strategy s1? It turns out that in the bimatrix case,
for almost any constraint the language ends up being NP-
complete [3, 9].6 GuaranteeNash is one such a problem.
In our results, each GuaranteeNash problem is complete
for the class that was the upper bound for the same instance
of FindNash. Figure 6 shows a summary of the results.

is in �
Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

Exact or Exp-Approx

Circuit

Boolean
Circuit

2-player
Circuit

Graph

Boolean
Graph

Bimatrix

Poly-Approx and Const-Approx

�������-
complete

�
�� ���-
complete

�� -complete ��-
complete

 �
��-complete

! �-
complete

except Const-Approx Bimatrix

"
Figure 6: Summary of GuaranteeNash Results

Theorem 8.1. Circuit game Exp-Approx GuaranteeNash

and 2-player circuit game Exact GuaranteeNash are NEXP-
complete.

This result relies heavily on proof techniques of [3]. It
follows from their proof that Exact GuaranteeNash is
NP-complete in bimatrix games. We observe that the result
scales up exponentially and also holds even for Exp-Approx

in this case.

Theorem 8.2. Circuit game and 2-player circuit game
Poly-Approx and Const-Approx GuaranteeNash are
Σ2P-complete.

Proof Sketch: We show that 2-player circuit game Const-

Approx GuaranteeNash is Σ2P-hard. We reduce from
QCircuitSat2, which is Σ2P-complete. QCircuitSat2 =
{(C, k1, k2) : ∃x ∈ {0, 1}k1 , ∀y ∈ {0, 1}k2 C(x, y) = 1}
where C is a circuit that takes k1 + k2 boolean variables.
Given an instance (C, k1, k2) create the 2-player circuit game
G = (s, ν), where si =

�
{0, 1}k1 × {0, 1}k2

�
∪ {∅}. The pay-

offs to G will be designed so that if there exists an x0 ∈
{0, 1}k1 such that C(x0, y) = 1 for all y ∈ {0, 1}k2 , then
a Nash equilibrium is for each player to play strategies of
the form (x0, y) (for any y ∈ {0, 1}k2) with probability 1.
However, if no such x0 exists, the only ǫ-Nash equilibrium
will be to play ∅ most of the time.

We will only define the payoffs for the first player because
the payoffs are symmetric, that is ν1(s1, s2) = ν2(s2, s1).

1. x1 6= x2, ν1((x1, y1), (x2, y2)) = 0

6Note that our results show that ExistsPureNash was an
exception to this rule. It was trivial in bimatrix games, but
at least NP-hard in every other setting.

2. ν1((x, y1), (x, y2)) =

• 1 − γ if C(x, y1) = C(x, y2) = 1

• 0 if C(x, y1) = 1 and C(x, y2) = 0,

• 1 if C(x, y1) = 0 and C(x, y2) = 1,

• 1
2

if C(x, y1) = C(x, y2) = 0

3. ν1(∅, ∅) = γ

4. ν1((x1, y1), ∅) = 0

5. ν1(∅, (x2, y2)) = 1 − γ

Let ǫ = 1
100

, γ = 1
10

, and gi = 1 − γ. It is relatively
straightforward to check that (C, k1, k2) ∈ QCircuitSat if
and only if there exists a Nash equilibrium that meets the
guarantees.

We now argue that Circuit game Poly-Approx Guaran-

teeNash is in Σ2P. First note that Σ2P
BPP = Σ2P be-

cause coNPBPP = coMA ⊆ Σ2P. Thus an ∃ coNPBPP-
predicate can be replaced by an ∃ Σ2P-predicate = Σ2P-
predicate. Now the result follows because we can guess such
an equilibrium and check, in coNPBPP, that it is a Nash
equilibrium and meets the guarantees. 2

Theorem 8.3. Boolean circuit game Exp-Approx Guar-

anteeNash is NP#P-complete.

Theorem 8.4. Boolean circuit game Poly-Approx and
Const-Approx GuaranteeNash are NPBPP = MA-complete.

Theorem 8.5. Graph game and boolean graph game Guar-

anteeNash is NP-complete for all levels of approximation.
The results hold even when restricted to degree d graphs,
d ≥ 3.

Conitzer and Sandholm [3] showed that Exact Guaran-

teeNash is NP-complete in bimatrix games. We observe
that the same holds even for Poly-Approx:

Theorem 8.6. [3] Bimatrix Exact and Poly-Approx

GuaranteeNash are NP-complete.

Theorem 8.7. Bimatrix Const-Approx GuaranteeNash

is in P̃.

Proof. Given an instance (G, ǫ, (g1, . . . , gn)) simply look

through all the k-uniform strategies, where k = 4 log(4 maxi |si|)

ǫ2

for a strategy profile that is an ǫ-Nash equilibrium where the
payoffs to players are within ǫ/2 of their guarantees. There
are only a quasipolynomial number of k-uniform strategies
and checking each strategy takes only polynomial time. If
such a strategy is found, accept, otherwise reject.

If there is no ǫ-Nash equilibrium within ǫ of the guaran-
tees, surely the algorithm will not find one. However, if there
exists some Nash equilibrium θ that pays off each player his
guaranteed amount, then by Theorem 3.4 there will exist
a k-uniform ǫ-Nash equilibrium θ′ that is within ǫ/2 of the
guarantees, and so the algorithm will find it.

Acknowledgments
We thank Eli Ben-Sasson, Adam Klivans, Ryan O’Donnell,
Rocco Servedio, and Amir Shpilka for many discussions about
algorithmic aspects of Nash equilibria which informed this
work. We thank Mike Kearns, Christos Papadimitriou, David
Parkes, and Avi Pfeffer for helpful pointers and advice, and
we thank Saurabh Sanghvi for fruitful discussions during the
initial stages of this work.

9. REFERENCES
[1] X. Chen and X. Deng. 3-Nash is PPAD-complete.

Technical Report TR05-134, ECCC, Nov. 2005.

[2] X. Chen and X. Deng. Settling the complexity of
2-player Nash-equilibrium. Technical Report
TR05-140, ECCC, Dec. 2005.

[3] V. Conitzer and T. Sandholm. Complexity results
about Nash equilibria. In IJCAI, 2003.

[4] C. Daskalakis, P. W. Goldberg, and C. H.
Papadimitriou. The complexity of computing a Nash
equilibrium. In 38th STOC, 2006. To appear.

[5] C. Daskalakis and C. Papadimitriou. The complexity
of games on highly regular graphs. In 13th ESA, 2005.

[6] C. Daskalakis and C. Papadimitriou. Three-player
games are hard. Technical Report TR05-139, ECCC,
Nov. 2005.

[7] J. Feigenbaum, D. Koller, and P. Shor. A
game-theoretic classification of interactive complexity
classes. In 10th CCC, pages 227–237, 1995.

[8] L. Fortnow, R. Impagliazzo, V. Kabanets, and
C. Umans. On the complexity of succinct zero-sum
games. In 20th CCC, 2005.

[9] I. Gilboa and E. Zemel. Nash and correlated
equilibria: Some complexity considerations. Games
and Economic Behavior, 1:80–93, 1989.

[10] P. W. Goldberg and C. H. Papadimitriou. Reducibility
among equilibrium problems. In 38th STOC, 2006. To
appear.

[11] O. Goldreich. On promise problems (a survey in
memory of Shimon Even [1935–2004]). Technical
Report TR05-018, ECCC, Feb. 2005.

[12] G. Gottlob, G. Greco, and F. Scarcello. Pure Nash
equilibria: hard and easy games. In TARK ’03:
Proceedings of the 9th conference on Theoretical
aspects of rationality and knowledge, pages 215–230,
New York, NY, USA, 2003. ACM Press.

[13] W. Hesse, E. Allender, and D. Barrington. Uniform
constant-depth threshold circuits for division and
iterated multiplication. J. of Computer and System
Sci., 65:695–716, 2002.

[14] M. Kearns, M. L. Littman, and S. Singh. Graphical
models for game theory. In UAI, pages 253–260, 2001.

[15] R. Lipton, E. Markakis, and A. Mehta. Playing large
games using simple strategies. In ACM Conference on
Electronic Commerce, 2003.

[16] N. Megiddo and C. H. Papadimitriou. A note on total
functions, existence theorems, and computational
complexity. Theoretical Computer Sci., 81(1):317–324,
1991.

[17] J. Nash. Non-cooperative games. Annals of
Mathematics, 54(2):286–295, 1951.

[18] J. F. Nash and L. S. Shapley. A simple three-person
poker game. Contributions to the Theory of Games,
1(24):105–116, 1950.

[19] G. Schoenebeck and S. Vadhan. The computational
complexity of Nash equilibria in concisely represented
games. Technical Report TR05-052, ECCC, May 2005.

[20] G. R. Schoenebeck. The complexity of finding Nash
equilibria in succinctly represented games.
Undergraduate Thesis, Harvard University, 2004.

