
Reaching Consensus on Social Networks
Elchanan Mossel1 Grant Schoenebeck2

1Weizmann Institute of Science and UC Berkeley
2UC Berkeley

mossel@stat.berkeley.edu grant@cs.berkeley.edu

Abstract: Research in sociology studies the effectiveness of social networks in achieving computa-
tional tasks. Typically the agents who are supposed to achieve a task are unaware of the underlying
social network except their immediate friends. They have limited memory, communication, and coordi-
nation. These limitations result in computational obstacles in achieving otherwise trivial computational
problems.
One of the simplest problems studied in the social sciences involves reaching a consensus among players
between two alternatives which are otherwise indistinguishable.
In this paper we formalize the computational model of social networks. We then analyze the consensus
problem as well as the problem of reaching a consensus which is identical to the majority of the original
signals. In both models we seek to minimize the time it takes players to reach a consensus.

Keywords: consensus; social networks

1 Introduction

We formalize social networks as restricted com-
putational models and study their computational
power. Our goal is to analyze their computational
complexity and find optimal algorithms for some
natural computational tasks. This may provide a
comparison to the actual behavior displayed by
people on social networks. In particular: do real
behaviors match the performance of the best pos-
sible algorithms on social networks? What prop-
erties of a social network dictate the time it takes
for the network to perform certain simple, compu-
tational tasks both theoretically and in practice?

To this end, we define a model of social net-
work computation parameterized by the amount of
memory allocated to each agent and the amount
of communication with its neighbors. We then
study two computational tasks. The first we call
the coordination problem, where the agents must
all agree on one of two otherwise indistinguish-
able colors. This problem is sometimes called the
consensus problem. The second problem, which
we call the majority coordination problem is a
strengthening of the first, where the consensus
reached must be identical to the majority of the
original signals. These problems are both triv-

ial from game theoretic point of view. From a
(global) computational point of view the coordina-
tion problem is trivial and the majority coordina-
tion problem is not very difficult either. Both game
theory and computational complexity view these
problems as trivial. However they do not predict
how the agents will arrive at solutions is the social
network setup.

To motivate these problems consider a group of
loosely connected friends who would like to go to
a movie tonight. The problem is that there are two
movie theaters, and they will only have fun if ev-
eryone goes to the same theater. We assume no
one cares which theater they go to, nor is there
any precedent for one theater over the other. The
friends will happen into each other throughout the
day at school (or online) and need to all know
where to go by the end of school. What protocol
should they run?

Alternatively the friends may have a true prefer-
ence between the two theaters and their wish now
is to go to the theater that is preferred by the ma-
jority. What protocol should be used in this case?

Variants of the example above are natural in
modern social networks where the friendship
graph is well defined and interactions are limited
by the underlying medium.

1

1.1 Motivating and Related Work

Our work is partially motivated and informed
by past and on-going works studying related prob-
lems from different angles. Most relevant is the
work from experimental sociology. Latané and
L’Herrou [LL96] study clustering, consolidation,
and minorities groups using a similar problem they
call the conformity game played by human subjects
in four stylized networks. In the conformity game,
each player is paid a fixed amount if his final la-
bel agrees with the most popular final label. The
24 players are unaware of structure of the network
except for their immediate neighborhood. In their
experiment there are 4 rounds where players can
update their color. In 42 of 48 games, the play-
ers failed to all converge uniformly. Instead they
often clustered into two groups. Even though the
number of rounds was small (4), players often got
stuck in a local minimum before the final round–
situations where all people believed they were in
the majority. The authors note: “Participants failed
to win a bonus more then 25% of the time, which
seems particularly inept, considering that at least
half were guaranteed a win by the rules of the
game.” By understanding what are the optimal al-
gorithms for the problem, we can make more ac-
curate statements about how well people do.

Kearns, Judd, Tan, and Wortman [KJTW09]
study the coordination problem with human sub-
jects. In their experiment, some players are paid
an additional bonus when the consensus reached
is “blue”, and others are paid the bonus when the
consensus is “red” (still no one is paid anything
unless a consensus is reached). They study how
different graph structures, payment schemes, and
placement of like agents on the network influence
whether a consensus is reached, and if so, which
one. In their experiment, each player can switch
between two possible labels as many times as he
likes and can see the currently chosen labels of
each of his neighbors (plus a few other pieces of
information, including the degrees of each neigh-
bor). The players have 60 seconds to converge, or
they will all receive no payoff for that round.

Both Kearns, Suri, and Montfort [KSM06] and
a follow-up work by Enemark, McCubbins, Paturi,
and Weller [EMPW09] studied a coloring game
with human subjects. In the coloring game, each
agent must play labels (colors) different from the

labels (colors) of each of his neighbors. The sub-
jects were paid a fixed amount if all the agents
were successful, and received nothing otherwise.
The problem of finding such a coloring with c
colors of a general graph is NP-complete in the
worst case when c ≥ 3. Obviously this makes the
comparison between human behavior and the “best
known algorithm” somewhat problematic. In the
conclusion section we make some comments relat-
ing the work on coloring social networks and work
in algorithms and statistical physics on natural dy-
namics for coloring.

The aforementioned results of [LL96],
[KJTW09], and [EMPW09] were all in close
agreement to the computational simulations using
very simplified models.

Other than the experimental work in sociology,
problems such as the one studied here were studied
in a number of different areas.

The voter model has been studied in Statistical
physics since the 1970’s [CS73, HL75]. Reformu-
lated in the language of the current paper this is an
algorithm for the coordination problem which is
defined as follows. Whenever two people interact,
if their opinions are different then at random one
of the two adopts the view of the other. It is im-
mediate to see that this process must converge to
a coordinated view. Moreover, the time of conver-
gence is known and it is in general quadratic in the
size of the graph. For more details on the model,
see [Lig85].

The majority coordination topic was studied be-
fore in several works. Kearns and Tan [KT08]
created a protocol where each node requires
O(log(n)) memory and converges in time O(n7)
(this protocol is in the “vertex model” to be de-
fined later). This protocol basically runs the voter
algorithm repeatedly and takes the majority vote.
They show that this is correct with high probabil-
ity. Benezit, Thiran and Vetterli [BTV09] create an
algorithm in the edge model with 2-bits of mem-
ory and show that if there is a strict majority that
the algorithm will almost surely converge (with no
time bound). Meanwhile, a results of Land and
Belew [LB95] shows that no 1-bit memory au-
tomata works and so the result of [BTV09] is tight
with respect to memory.

Our work is also related to work in several dif-
ferent areas.

2

1.2 Related Work
There are a number of related but distinct prob-

lems that were studied in other areas. This is ex-
plained next.

1.2.1 Economics
Our work is naturally related to work in eco-

nomics on learning on networks. In this work sev-
eral models are suggested where multiple agents
on a network converge to the same value where
agents follow strategies aimed at maximizing their
utility. There are several differences from the prob-
lem studied here. In the economics models the
signals given to different players are all biased to-
wards a “true” value while here there is no bias nor
a true value. In much of the economics literature
the agents know the structure of the graph while
here they do not. Finally the economics models
require actions which maximize expected utility
where here the only goal is to arrive at global co-
ordination.

A different body of work in economics involves
graphical games. In these models, adjacency in the
graph reflects the fact that a neighbors play effects
ones utility. Note that in the problems presented
here the utility actually depends on the actions of
all players while the graph signifies the underlying
information structure.

For references and an overview of the related
economics literature, see chapters 8 and 9 in
[Jac08].

1.2.2 Distributed Computing
The coordination problem is of natural inter-

est in distributed computing. The basic goal is
for all entities in a network to arrive at a coordi-
nated value. Several techniques that we employ are
commonly uses in distributed computing. We will
point of some of the relationships along the way.
However, the standard assumptions in distributed
computing are very minimal in terms of the sym-
metry between different states. For example in the
standard setting in distributed computing the only
requirement about the value eventually arrived at
is that at least one of the nodes had this value to
start with. So some of the standard coordination
algorithms converge to the minimal value among
the original values assigned to nodes. For further
references in distributed computing see [Pel00],
[KDG03], [BDD+08], and [OsFM07].

1.3 Our Framework
Our goal is to understand the computational

power of social networks compared with more
standard computational models. To this end we do
the following:
• We do not consider the competitive / game-

theoretic aspect of the problem. So all players
have the same payoff.

• We consider only the very simple computa-
tional tasks of coordination and coordinated
majority.

• We assume that except for their immediate
neighbors the agents have very rough knowl-
edge about global network parameters such as
its diameter or size.

• We require the models to respect a strong
symmetry between the signals (see Section
2.1 on Model for a more rigorous definition).
This is done in order to model that the two
items are indistinguishable (e.g. there may
not be a natural ordering), and to exclude
some trivial algorithms for the problems sug-
gested here e.g., for the coordination prob-
lem, the algorithm that always declares red.

From a different perspective our model is
stronger than those introduced in [LL96] and
[KJTW09]. Both papers study problems very sim-
ilar to the coordination games, where the agents
have extremely limited communication with each
other. In [LL96] the agents can only send a
color and a confidence, and in [KJTW09] they can
only communicate their current label. Our model
allows richer spaces of communication between
players. This is motivated by the experiments in
[EMPW09] where the players often try to enrich
their set of signals [Ene09]. For example, they
may toggle rapidly between two colors to signal
that they are indifferent between those two labels.

1.4 Our Results
Our main technical results show that for many

models it is the broadcast time of a graph that
determines the time to convergence, and in other
models it is simply the diameter. The broadcast
time is the expected the time for a message to reach
everyone starting from a single player (assuming
that every player broadcasts the to all his neighbors
upon receipt). This is novel since previous work in
this area arrived at algorithms whose running time

3

depended in a polynomial way on the number of
vertices in the graph. As it is widely believed that
many social networks are “small world” networks,
it is expected that the diameters and broadcast time
are (poly) logarithmic in the size of the graph.

Our main results show that
• The coordination problem can be solved in

expected time O(ω) with expected O(1)
memory, where ω is the broadcast time.

• The majority coordination problem can be
solved in expected time O(n3), with only 1
bit of additional memory.

• The majority coordination prob-
lem can be solved in expected time
O((d + log(n)) log(n)) with O(log(∆))
memory, where d is the diameter and ∆ is the
maximum degree.

Some of the faster algorithms make some mild
assumptions on the players approximate knowl-
edge of the network such as knowledge of the di-
ameter of the network up to a constant factor, or
knowledge of the log of the size of the network up
to a constant factor.

Remark: The work in [KSM06, EMPW09]
deals with the problem of graph coloring. Even
though graph coloring is known to be NP-hard,
the computational hardness parameterized by the
graph structure is in general poorly understood.
At the conclusion section we briefly discuss some
speculations regarding the graph coloring problem
on social networks.

1) Road Map
In Section 2 we define our model and the prob-

lems studied. In Section 3 we present our re-
sults on the coordination problem. In Section 4
we present our results on the majority coordina-
tion model. In Section 5 we conclude with future
directions for research in this area.

2 Schema and Notation
We model evolution on these networks in

three ways: asynchronous edge dynamics, asyn-
chronous vertex dynamics, and synchronous ver-
tex dynamics.

We model an edge dynamics network as a three
tuple N = (V, E, W) where
• V is the set of agents,
• E ⊆ V ×V is the set of relationships between

the agents,

• W = {we}e∈E and we ∈ R≥0 is a set of rates
for each edge.

We can similarly define a vertex dynamics net-
work by assigning rates to the vertices. We say that
a network is uniform if all its rates are 1.

2.1 The Model
We model an asynchronous edge dynamics as a

five tuple (N, Σ, S,A, T) where
• N is an edge dynamics network.
• Σ = Σe × Σi is the set of possible states of

each vertex divided into external states and
internal states.

• S ⊆ Σ is set of possible start states.
• A is a piece of advice that each agent has ac-

cess to which can be thought of as a noisy
value of some network parameter (e.g. an ap-
proximate size of the network). Note that we
do not count this in the memory of the agent
because he cannot modify it, and all our dy-
namics are designed so that the advice need
only be approximately correct. Finally, for
ease of notation, we assume that all agents re-
ceive the same advice, this is not necessary,
and all the results apply to the setting where
each agent has his own noisy version of A.

• T is a possibly probabilistic update function
of the following form: let ∆ be the maximum
degree in N , then T : Σ× Σ× A× [0, 1] →
Σ×Σ is of the form T = T ′× T ′ where T ′ :
Σ×Σe×{1, . . . , ∆}×A× [0, 1] → Σ. The
map T ′ takes the current state, the neighbor
external state, the neighbor’s position, some
random bits and produces a new state. When
an edge rings we apply the map T ′ for each of
the endpoints of the edge. We will sometimes
omit the last two arguments of T for ease of
notation.

A configuration s of a dynamics is an assign-
ment of states for all the vertices of graph: s :
V → Σ. We will usually denote s = {sv}v∈V .
A starting configuration s of a dynamics is a con-
figuration where sv ∈ S for all v ∈ V .

Let s∗ be some starting configuration, and
let γ = {γv}v∈V where a γv : Γ(v) →
{1, . . . , |Γ(v)|} is a permutation which labels the
neighbors of v.

Given such s∗ and γ a run of an asynchronous
edge dynamics is a random process (over the ran-
domness of T and when the edges “ring”) whose

4

range is a set of mappings X = {Xv}v∈V where
Xv : R≥0 → Σ. Xv(t) is the state of vertex v
at time t. The process is defined by first letting
X(0) = s. The value X(t) remains constant in
time until the Poisson process at an edge e rings.
The process at each edge “rings” at rate we. When
the edge e = (u, v) rings at time t, the state of the
vertices incident to the edges are updated to be

T (su,sv, a, r) =
(T ′(su, (sv)e, γv(u), a, r),
T ′(sv, (su)e, γu(v), pu, r)),

where

s = {sv}v∈V = {Xv(t−)}v∈V

is the state just prior to the ring, a ∈ A is the ad-
vice, and r ∈ [0, 1] is the randomness.

We note that we can also define an asynchronous
vertex dynamics model where the vertices ring. In
this case N is a vertex dynamics network, and T
is a set of functions T = {Td}∆d=0 where ∆ is the
max degree of the graph. Td : Σ × (Σe)d × P ×
[0, 1] → Σ represents one player updating her state
based on her neighbors’ external states. Given a
start state s∗ and permutation γ = {γv}v∈V where
a γv : {1, . . . , |Γ(v)|} → Γ(v), we similarly de-
fine a run as a random variable X such that X(0) =
s∗. This process is updated when any vertex v’s
clock rings according to a Poisson clock with rate
wv . Every time a vertex v’s clock rings, sv is
changed to Tdeg(v)(Xv(t−), (Xγv(1)(t−))e, . . . ,
(Xγv(deg(v))(t−))e, a, r), where a ∈ A is the ad-
vice, and r ∈ [0, 1] is the randomness.

Finally, we can also define a synchronous ver-
tex dynamics model. This is like the asynchronous
vertex dynamics model however at each time step
t, the function T is applied simultaneously to all
vertices.

We remark that most of our results carry over
to the vertex models, but leave detailed study of
them to a future time. In this paper we focus on the
asynchronous edge dynamics and remark about the
other models when it is convenient.

Definition 1. For dynamics (N, Σ, S, A, T), let
Σb, Σr ⊆ Σ be two disjoint sets. We say that
the dynamics is symmetric with respect to Σb and
Σr if there exists a permutation π : Σ → Σ such
that π(Σb) = Σr; π preserves internal, external,

and start states (π(Σi) = Σi, π(Σe) = Σe, and
π(S) = S); and such that T (π(s1), π(s2), a, r) =
(π × π)(T (s1, s2, a, r)) for all s1, s2 ∈ Σ, a ∈ A,
and r ∈ [0, 1].

We note that our models are natural for so-
cial networks, and similar models have been pro-
posed in the literature for example, see simulations
in [OSH+07] and [KKW08]. The synchronous
model is similar to models in distributed systems,
and many of our results will carry over to this set-
ting.

Remark 2. Note that our asynchronous models
are quite different from the asynchronous models
in distributed computing. The distributed comput-
ing models have broadcast time on edges which
does not follow a distribution. Instead it is only
guaranteed to be bounded. The performance of
algorithms in distributed computing is measures
by the total amount of time divided by the longest
broadcast time of an edge, while our algorithms
the time is measured without any normalization.
Indeed for Poisson type models the longest broad-
cast time is of order log n and it is exactly this
log n factor that some of our algorithms try to
save.

To understand the difference between the two
different models, consider broadcast where there
are many paths of equal length between two nodes.
In the distributed computing setup no speed up
is gained. This contrasts with our asynchronous
models where if many paths exists between two
nodes, the expected time it takes for a broad-
cast message to travel between those two nodes is
greatly reduced. Additionally, our asynchronous
models provides no worst case bound for any
event.

2) Equivalence of Models
Any dynamics in the synchronous vertex dy-

namics model can be simulated by a uniform dy-
namics in either asynchronous dynamics model.
The two propositions below are related to the “syn-
chronizer” problem studied in distributed comput-
ing which studies how to simulate synchronous
distributed algorithms on asynchronous distributed
networks (see, for example, Chapter 6 in [Pel00]).

Proposition 3. Any synchronous vertex dynamics
can be simulated by a uniform asynchronous dy-
namics with log(n) slow down (in expectation) and

5

each agent’s public memory growing to twice the
size plus two bits.

Proof. To simulate in the asynchronous vertex
model each vertex simply keeps copy of the ex-
ternal state he was in during the previous step and
an additional state of which step he is in modulo 4.
To see how this works first imagine that each ver-
tex keeps all his previous state and the step count
his is on. An agent only performs a computation
if his state is less than or equal to all his neigh-
bors (in performing a step he updates his current
state according to the synchronous rules and up-
dates his history and step count in the natural way).
Because each agent only performs an update when
he is less than or equal to all his neighbors, and
his neighbors save all their previous state, he will
have all the information required to make this up-
date, and this provides a faithful simulation. But
notice that if each agent only updates when he is at
a step less than or equal to all he neighbor states,
then it will always be the case that his neighbor
states are equal to, one more or one less then his
state. Thus it is sufficient to keep around only the
previous state and only the step count modulo 4.

It is expected that in each log(n) steps each ver-
tex rings at least once, and so after k log(n) steps,
we expect each vertex to be at step count at least
k.

Proposition 4. Any dynamics in the synchronous
vertex dynamics model can be simulated by a uni-
form dynamics in the asynchronous edge model
with log(|E|) ≤ 2 log(n) slow down and each
agent v’s public memory growing to twice its size
plus two bits, and each agent v’s private memory
growing by a factor of |Γ(v)|, where Γ(v) denotes
the neighbors of v.

Proof. To simulate in the asynchronous vertex
model each vertex keeps track of which step he
is on (modulo 4) and a copy of the external state
he was in during the previous step as well as the
external state for each neighbor agent for the cur-
rent step he is on and a bit indicating if that state is
current.

To see how this works first imagine that each
vertex keeps all his previous state and the step
count his is on. An agent only performs a com-
putation if he has up to date information on the
external states of all his neighbors (in performing

a step he updates his current state according to the
synchronous rules and updates his history and step
count in the natural way and clears the history for
his neighbors). Otherwise, he will simply update
this information if possible.

Because each agent only performs an update
when he is less than or equal to all his neighbors
(this must be the case for his information to be up
to date), and his neighbors save all their previous
state, he will have all the information required to
make this update, and this provides a faithful sim-
ulation. But notice that if each agent only updates
when he is at a step less than or equal to all he
neighbor states, then it will always be the case that
his neighbor states are equal to, one more or one
less then his state. Thus it is sufficient to keep
around only the previous state and only the step
count modulo 4.

It is expected that in each log(|E|) ≤ 2 log(n)
steps each edge rings at least once, and so after
k log(|E|) steps, we expect each vertex to be at
step count at least k.

It is unclear if the asynchronous models can sim-
ulate each other. The issue is that when you simu-
late in a manner like above, you destroy the inde-
pendence of the ring times. Also, it is unclear what
it even means claim equivalence of asynchronous
models that are not uniform. However, many dy-
namics that are not overly dependent on the order
of rings will work in all models with no real mod-
ification.

2.2 Further Notation
We will always use n to denote |V |, d for the

diameter of the underlying network, and Γ(v) the
neighbors of a vertex v. If E is some property of a
configuration in the network configuration model,
we will denote by τ(E) the first time an event oc-
curs perpetually in the dynamics (so immediately
before τ(E) the property does not hold, but after
τ(E) the property always holds). In most of the
considerations below E will be an event such that
if it holds at time t then it holds at all later times.
Note that for such events τ(E) is the first time the
event holds.

For vertex v, let Bv(t) be the set of vertices that,
at time t, could have possibly received a message
from v given the sequence of vertex/edge rings.

6

Similarly, for vertex v, let B′
v(t) be the set of ver-

tices that, at time t, could have possibly sent a mes-
sage to v given the sequence of vertex/edge rings.

We define the broadcast time of a dynamics to
be ω = maxv∈V E[τ(Bv(t)) = V)]. Note that
for every vertex v: ω/2 ≤ E[τ(Bv(t)) = V)] ≤
ω. For the synchronous model, the broadcast time
will simply be the diameter of the graph.

Let U be the event that for every pair of vertices
u, v ∈ V Bu(t) ∩ Bv(t) 6= ∅. Let U ′ be the event
that for every pair of vertices u, v ∈ V B′

u(t) ∩
B′

v(t) 6= ∅.
We define the collision time of a dynamics to be

η = E[τ(U)] = E[τ(U ′)]
We define C to be the event of coordination (or

majority coordination depending on the context).

2.3 Problems Considered
We consider two basic problems:
In the first, the Coordination Problem, given

network N , we would like to design a dynamics
(N, Σ, S, A, T) where Σ is partitioned into two
special disjoint subsets Σr and Σb (which stand
for red and blue), such that eventually, either all
the agents’ states are in Σr, or all the agents’ states
are in Σb. We will additionally require that 1) the
dynamics are symmetric with respect to Σr and
Σb (see Section 2.1 for precise definition) and 2)
if all the states input to T are in Σr, then all the
states output by T must be in Σr as well, (and sim-
ilarly for Σb). Let C be the event that either all the
agents’ states are in Σr or all the agents’ states are
in Σb. For such a dynamics, we would like to study
the expected time to consensus, which we define
as maxs,γ E[τ(C)] where s is the initial state and γ
are the set of permutations defined in Section 2.1.
We would like to minimize this value, usually over
some class of dynamics. Note that the agents need
not be aware that they are in a consensus. All that
is required is that they do not leave it.

The second, the Majority Coordination Problem
is like the Coordination Problem but with one ad-
ditional property. Given network N , we would like
to design a dynamics (N, Σ, S, A, T) where Σ is
partitioned into two special disjoint subsets Σr and
Σb (which stand for red and blue), such that if the
majority of the initial states are in Σr, then even-
tually, all the agents’ states are in Σr; similarly for
Σb; if there is a tie, then we just require a consen-
sus. We will additionally require that 1) the dy-

namics are symmetric with respect to Σr and Σb

(see Section 2.1 for precise definition) and 2) if all
the states input to T are in Σr, then all the states
output by T must be in Σr as well, (and similarly
for Σb). Let C be this event. For such a dynamics,
we would like to study the expected time to major-
ity consensus, which we define as maxs,γ E[τ(C)]
where s is the initial state and γ are the set of per-
mutations defined in Section 2.1. We would like
to minimize this value, usually over some class of
dynamics. Note again that the agents need not be
aware that they are in a consensus. All that is re-
quired is that they do not leave it.

We note that all of the dynamics considered in
the paper will have the additional desired property:
If the original network is in consensus then the dy-
namics will not change the value of the consensus.

3 The Consensus Problem
The problem of reaching a consensus was stud-

ied in statistical physics for a specific model called
the voter model. In this each vertex is one of two
states, when an edge “rings”, using the common
randomness one of the end points incident to the
edge is chosen to copy the state of the other.

Definition 5. The Voter Model asynchronous edge
dynamics (N, Σ, S, A, T) are defined so that Σ =
Σe = S = {+1,−1}, A = ∅, T (s1, s2) =
(s1, s1) with probability 1/2 and (s2, s2) with
probability 1/2.

The Voter Model asynchronous vertex dy-
namics (N, Σ, S, A, T) are defined so that
Σ = Σe = S = {+1,−1}, A = ∅,
T (sv, (sγv(1), . . . , sγv(deg(d)) = sγv(i)) with
probability 1/deg(d) for each 1 ≤ i ≤ deg(d).

Theorem 6. For any connected network in the
uniform asynchronous edge dynamics model, there
exists a memoryless dynamics independent of the
graph which reaches consensus in expected time
n2.

The theorem is a result of the following propo-
sitions whose statement and proofs are variants of
classical results on the voter model which proven
using martingale arguments.

Proposition 7. Consider the edge model with
rates 1 and the voter model on G. Let λ be the
number of edges in the smallest cut in G. Then for

7

any initial configuration the process will converge
to the same color with probability at least 1/2 by
time at most

T1 =
n2

2λ
,

and with probability at least 1− 2−k by time kT1.

The proof is very similar to previous voter
model proofs.

Proof. Note that X(t) =
∑

v Xv(t) is a bounded
martingale. This follows from the fact that when-
ever an edge is chosen and the two end points are
not identical, it is equally likely that the value of
X will increase or decrease by 1.

Let P (t) be the minimum over all initial config-
urations of the probability of convergence by time
t.

By the orthogonality of martingale increments it
follows that for all t, h ≥ 0:

E[X2(t+h)] = E[X2(t)]+E[(X(t+h)−X(t))2].

Therefore writing Ψ(t) = E[X2(t)] it follows that

Ψ′(t) = lim
h→0

h−1E[(X(t + h)−X(t))2].

We lower bound Ψ′(t) by conditioning on the con-
figuration at time t and noting that for small h, if
at time t the process hasn’t converged then we ex-
pect one edge between a vertex labeled by 1 and
an edge labeled by −1 to ring with probability at
least hλ and therefore as h → 0 the conditional
expectation of (X(t + h)−X(t))2 is at least 4hλ.
We thus conclude that

Ψ′(t) ≥ 4λ(1− P (t)).

So if P (t) ≤ 1/2 we obtain:

n2 ≥ Ψ(t) ≥ t2λ,

so

t ≤ n2

2λ
,

as needed.

In the asynchronous vertex model, when a ver-
tex rings, it copies the state of a random neighbor.

Proposition 8. For the vertex model the follow-
ing holds. For any initial configuration the process
will converge to the same color with probability at
least 1/2 by time at most

T2 =
(
∑

v d(v))2

2 mine=(u,v) d(u) + d(v)

and with probability at least 1− 2−k by time kT2.

The proof is very similar to previous voter
model proofs.

Proof. The proof for the vertex model is similar
to that of Proposition 7. We only need to find the
“right” martingale. We will look at

∑
v d(v)Xv(t)

where d(v) is the degree of v. In order to show that
this is a martingale consider an edge (u, v) where
Xu 6= Xv . This edge can be chosen by choos-
ing one of the two end points. At rate d(v)−1 the
value of Xv(t) will be replaced by Xu(t) and at
rate d(u)−1 the value of Xu(t) will be replaced by
Xv(t). Summing the expected differences we get:

d(v)−1d(v)(Xv(t)−Xu(t))+

d(u)−1d(u)(Xu(t)−Xv(t)) = 0.

This established that X(t) is a martingale. Define
Ψ(t) = E[X2(t)] as before. Consider X(t + h)−
X(t) for small h and an edge (u, v) that rings be-
tween time t and t + h contributes

(d(v)−1d(v)2 + d(u)−1d(u)2)(Xv(t)−Xu(t))2 =

(d(v) + d(u))(Xv(t)−Xu(t))2.

Therefore we have:

Ψ′(t) ≥ 4 min
e=(u,v)

(d(u) + d(v)).

So if P (t) ≤ 1/2 we obtain:

(
∑

v

d(v))2 ≥ Ψ(t) ≥ 2t min
e=(u,v)

(d(u) + d(v)).

so

t ≤ (
∑

v d(v))2

2 mine=(u,v) d(u) + d(v)
,

as needed.

In the next result we provide an optimal time
algorithm, but the amount of memory needed is

8

O(log(n)). We include this theorem for its sim-
plicity. Algorithms with best performance will be
obtained later. For the algorithm, we must assume
the players know the log of the size of the network
up to a constant factor to get optimal parameters.
Note that these are very reasonable assumptions in
many social network settings.

Definition 9. The Greatest-Element asynchronous
edge dynamics (N, Σ, S, A, T) are defined as fol-
lows: Let A = N, Let a ∈ A be the advice such
that a = c log(n). Let Σ = Σe = Z \ {0}.
S = {−1, 1}. We define T (s1, s2, a, r). The out-
come is (si, si) where i = 1 if |s1| > |s2|, i = 2
if |s2| > |s1|, and i is randomly chosen to be 1 or
2 if |s1| = |s2|. If s1 and/or s2 is +1/ − 1 then
they first modify their states to be a choose a ran-
dom non-zero number between 2si and (25a+1)si,
and then use T as defined above.

The story of what happens is that each agent
generates reasons (of varying quality) to his sign.
Each vertex relays the best reasoned message he
has seen, or a random one if two are equally well
reasoned. If there is honest confusion about the
best reason, then it will take a while to converge.

Theorem 10. The Greatest-Element asynchronous
edge dynamics (N, Σ, S,A, T) will reach consen-
sus in expected time ω + n4−5c with memory
5c log(2n + 2)) where advice a = c log(n). In
particular, if c ∈ [1, 5], then it will converge in ex-
pected time ω + 1 with memory 25 log(2n + 2)).

Proof. Assume for the analysis, that each vertex
starts off with a random number between−25a−1
and +25a + 1 that has absolute value greater than
1. We first condition on the fact that there is a
unique such number of highest absolute value. In
this case, it will take time ω to spread, because we
are broadcasting from that vertex. Now condition
on the fact that there is no unique highest initial
internal state. In expected time ω, every agent will
have some such message, but perhaps not associ-
ated with the same color. Now we are running the
voter model, and so will converge in expected time
n2, by Proposition 7.

Let q be the probability there does not exists
a unique number of highest absolute value. If
we show that q ≤ n2−5c, then the running time
is at most ω + qn2 = ω + n4−5c. However,

the probability that all the numbers are unique
is 1(1 − 1

25a) · · · (1 − n−1
25a) ≥ 1 − n2

25a and so
q ≤ n2−5c.

In the next result, we provide dynamics which
are expected to converge only a constant factor
slower than the broadcast time, and in addition
only use an expected finite about of memory, as-
suming the players know the diameter of the net-
work and the sum of the rates on the entire net-
work up to a constant factor. Even if the player
know nothing at all about the network, it uses only
O(log(n)) memory and expects to converge with
a O(log(n)) slow down.

Definition 11. The Wait-and-See asynchronous
edge dynamics (N, Σ, S, A, T) are defined as fol-
lows: Let A = R≥0, a = cω

∑
(u,v)∈E w(u,v). Let

Σ = Σe = Z \ {0}. S = {1,−1}. We now de-
fine the transition function for vertices v1 and v2 in
states s1 and s2 respectively. T (s1, s2) =:
• If |s1| > |s2| then s2 becomes s1. Similarly,

If |s2| > |s1| then s1 becomes s2.
• If |s1| = |s2| and they are odd, then with

probability 1/2, v1 flips a coin and with prob-
ability 1/(2bs1/2ca) and increases the magni-
tude of its state by 1, thereby moving to an
even state and “electing” himself. With the
remaining 1/2 probability, v2 does likewise.

• If s1 = s2 and they are both even, do nothing.
• If |s1| = |s2|, s1 6= s2 and they are even,

then each vertex increases the magnitude of
his state by 1.

The story behind these dynamics are that ini-
tially no one wants to venture an opinion (odd
state). At some point, an agent gets tired of waiting
and decides on his outcome (the sign represents the
chosen outcome, the state being even represents
the fact that he has chosen). He then broadcasts
the outcome to his neighbors. As long as no one
else decides to do the same (move to even) be-
fore hearing of this decision a consensus will be
reached. Otherwise, if someone has decided on
one outcome (even positive) and he talks with his
neighbor who has decided on a different outcome
(even negative), he will then broadcast to every-
one to abandon their past decision (odd with mag-
nitude +1). The amount of time that each agent
waits depends on how fast he thinks his message
will spread to the network, and on how many other

9

people are making the same decision as him. If
there is an error initially, each agent will be more
patient the next time.

We note that even if the agents all receive advice
1 (which is essentially no information), then the
dynamics still perform reasonably well.

Theorem 12. The Wait-and-See asynchronous
edge dynamics (N, Σ, S,A, T) will reach consen-
sus in expected time O(ω(log(1

c) + c)) with mem-
ory O(1 + log(1

c)) where c is such that a =
cω

∑
(u,v)∈E w(u,v). In particular, if c is con-

stant, then a consensus is reached in expected time
O(ω) with expected memory O(1), and if a = 1
(i.e. the agents have no information about the
graph) then a consensus is reached in expected
time O(ω(log(α) + 1

α)) with a expected memory
O(1 + log(α)) where α = ω(

∑
(u,v)∈E w(u,v))

Proof. Recall C is the event of consensus, and
τ(E) is the first time an event E happens perpet-
ually. Let Ek be the event of having a state of ab-
solute value at least k. We call the maximum state
of a configuration the absolute value of the state
with the maximum absolute value. Let 2k∗ + 2
be the maximum state when consensus is reached
(note that it will be an even state with probability
1).

We begin with the following claim which
bounds the expected time to reach consensus in
terms of 1) the expected time starting with max-
imum state 2k + 1 to reach either consensus or
maximum state 2k + 3, and the probability that
maximum state 2k + 2 is ever reached.

Claim 13.

E(τ(C)) ≤
∞∑

k=0

E[τ(C ∨ E2k+3)|k∗ ≥ k] Pr[k∗ ≥ k]

Proof.

E(τ(C))

=
∞∑

k=0

E[τ(C)|k∗ = k] Pr[k∗ = k]

=
∞∑

k=0

(
E[τ(C)− τ(E2k+1)|k∗ = k]

+
k−1∑

`=0

E[τ(E2`+3)− τ(E2`+1)|k∗ = k]
)
·

Pr[k∗ = k]

=
∞∑

k=0

E[τ(C)− τ(E2k+1)|k∗ = k] Pr[k∗ = k]

+
∞∑

`=0

∞∑

k=`+1

(E[τ(E2`+3)− τ(E2`+1)|k∗ = k] Pr[k∗ = k]

=
∞∑

k=0

E[τ(C)− τ(E2k+1)|k∗ = k] Pr[k∗ = k]

+ E[τ(E2k+3)− τ(E2k+1)|k∗ ≥ k + 1] Pr[k∗ ≥ k + 1]

=
∞∑

k=0

E[τ(C ∨ E2k+3)− τ(E2k+1)|k∗ ≥ k] Pr[k∗ ≥ k]

It remains to bound E[τ(C∨E2k+3)|k∗ ≥ k] and
Pr[k∗ ≥ k]

Claim 14. E[τ(C ∨ E2k+3)|k∗ ≥ k] ≤ ω(c2k + 2)

Proof. We define four types of configurations:

1 Max state is 2k + 1 is odd.

2 Max state is 2k + 2 is even and all agents in this
state have the same sign.

3 Max state is 2k + 2 is even and all agents are
in this state have the same sign (e.g. consensus is
reached).

3’ Max state is 2k + 2 is even and different agents
in this max state have different signs.

Assume that we are in configuration type 1) with
maximum state 2k+1. Configuration type 1) must
transition to configuration type 2), the only ques-
tion is how long it will take. The conversion will
take place as soon as a vertex incident to an edge
between two state 2k +1 vertices elects itself. The

10

expected time for the state 2k + 1 to spread ev-
erywhere is ω. Once this has happened, the ex-
pected time until an vertex elects itself to maxi-
mum state 2k + 2 is cω2b2k+1c. This is because
each edge e has a poisson clock with rate we, how-
ever the rate at which either vertex incident on the
edge elects itself is we

a2b2k+1c because a vertex in-
cident to the edge only appoints itself with proba-
bility 1

a2b2k+1c . Thus all the clocks together have a
combine effective rate of

∑
e∈E

we

a2b2k+1c = 1
cω2k ,

so the expected time until an vertex appoints itself
is cω2k.

Once in configuration type 2) the expected time
for the edges rings to be such that the state 2k + 2
spreads everywhere is ω. Once this happens, ei-
ther, we have reached consensus, and are in con-
figuration 3), or another vertex has elected himself,
and we are in configuration 1) again.

Putting this together the expected time to transi-
tion is at most ω(c2k + 2).

Define c′ and k0 as follows: if c ≥ 64 then c′ =
c and k0 = 0; if c < 64 then fix k0 so that c2k0 =
c′ ∈ [64, 128), and thus k0 ≤ max{7− log(c), 0}.

Claim 15. For k ≥ k0 Pr[k∗ ≥ k + 1|k∗ ≥ k] ≤
1
4 . In particular, Pr[k∗ ≥ k0 + k′] ≤ (1

4)k′ and
E[k∗] ≤ k0 + 2.

Proof. Look at the time of the first maximum state
2k + 2. We will show that with probability 1

4 no
other vertex elects itself before this state spreads to
the entire graph. Fix parameter ∆ =

√
c2k. The

probability that the initial 2k + 2 state spreads to
the entire graph in time ∆ω is 1−∆−1 by Markov.

Some edge between two 2k + 1 states will
elect itself at rate at most 1

ωc2b2k+1c (see calcula-
tion in Proof of Claim 14). Thus the probability
of a second self election in time ∆ω is at most
1− exp(− 1

ωc2k ∆ω) ≤ ∆ω
ωc2k = ∆−1.

So consensus is reached with probability 1 −
2/∆ = 1− 2/

√
c2k ≥ 1− 2/

√
c′ ≥ 1− 1

4

Putting things together, we bound E[τ(C)]. Us-
ing Claims 13 and 14 we see that it is enough to
bound

∑∞
k=0(2 + c2k)ω Pr[k∗ ≥ k]

∞∑

k=0

(2 + c2k)ω Pr[k∗ ≥ k]

= 2ωE[k∗] + ω

∞∑

k=k0

Pr[k∗ ≥ k0]
(
c2k

)

= 2ωE[k∗] + ω

k0−1∑

k=0

c2k +
∞∑

k=k0

Pr[k∗ ≥ k0]
(
c2k

)

≤ ω

(
2k0 + 4 + c2k0 +

∞∑

k=0

(
1
4

)k (
c2k0+k

)
)

≤ ω
(
2k0 + 4 + 3c2k0

) ≤ ω(406 + log(
1
c
) + 3c)

= O(ω(log(1/c) + c)

We note that the amount of memory required
is log(2k∗ + 1), and E[log(2k∗ + 1)] ≤ O(1 +
log(1/c)).

The dynamics are symmetric with respect to Σr

being the positive states and Σb the negative. To
see this, define the map π(s) = −s.

The next result shows that in the synchronous
model, there is a simple processes with 3 bits
of memory that allow the agents to coordinate in
time related to the diameter (broadcast time) of the
graph assuming the players know the product of
the diameter and the network and the size of the
network up to a constant factor.

Definition 16. We define the Wait-and-See syn-
chronous dynamics (N, Σ, S, A, T) as follows:
Let A = N, let a ∈ A such that a = c(d + 1)n
(where d is the diameter of the network). Let Σ =
Σe = {free, error, reset} × {blue, red}. S =
{(free, red), (free, blue)}. We will write sv ∈ Σ
as sv = (pv, cv) where pv ∈ {free, error, reset}
is the “phase” and cv ∈ {blue, red} is the “color”.
T ′(sv, sγv(1), . . . , sγv(deg(v)), a, r) =
• If pv = reset, output pv = free.
• Else, if pv = error, output pv = reset.
• Else, if error ∈ {pγv(1), . . . , pγv(deg(v))},

output pv = error.
• Else, if {(set, red), (set, blue)} ⊆
{sv, sγv(1), . . . , sγv(deg(v))} output
pv = error.

11

• Else, if pv = free and red ∈
{cγv(1), . . . , cγv(deg(v))}, output
sv = (set, red). Similarly if pv = free
and blue ∈ {cγv(1), . . . , cγv(deg(v))}, output
sv = (set, blue).

• Else, if pv = free, with probability 1/a out-
put pv = set. In this case we say that agent v
“elects” himself.

Theorem 17. The Wait-and-See Synchronous dy-
namics will reach consensus in expected time

c(d + 1) + d +
1

c− 1
(c(d + 1) + 2d)

where a = c(d + 1)n. This is constant if c is also
a constant greater than 1.

Proof. At any particular time we define k to be
the maximum number of times that any vertex has
been in the error phase. Now at any time t we
classify the configuration into 3 regimes:

1. Some of the vertices have been in the error
phase k times, and no vertex that has, has
elected himself after being in the error phase
k times. Additionally, not all vertices are in
the free phase.

2. All of the vertices have been in phase error
k times and are now in the free phase.

3. Some vertex has elected himself after being
in the error phase k times.

Fix a run, and consider any two neighbors u and
v. If at time t vertex u is in phase error, then it
must be the case that v was also in phase error at
time t − 1, t, or t + 1 (and vice versa). However
each vertex can only be in the error phase every
3 steps (because after an agent is in phase error
he transitions to phase reset and then free). This
creates a bijection between time steps when v and
u are in phase error. Thus, in any run, each vertex
is in the error phase for the same number of steps.
Moreover, if vertex v enters the error phase for the
kth time at time t, then any vertex u of distance `
from v must enter the error phase for the kth time
by time t + `

We first claim that it will take time at most time
d + 2 to move from the 1st regime to either the
second or the third. If some vertex is in the error
phase for the kth time at time t, by the above
reasoning all vertices will have been in the error
phase for the kth time at time t+d. Once each ver-
tex has been in the error phase exactly k times, by

the above reasoning, every vertex which neighbors
an vertex in the error phase, is in either the error
phase or the reset phase. Thus after 2 more steps
(assuming no vertex that has been in the error
phase k times elects itself) every vertex will be in
the free phase.

To move from regimes 2 to regimes 3 takes
expected time c(d + 1) because whilst in phase
free, each vertex elects himself with probability
1
a = 1

c(d+1)n each round. There are n such ver-
tices, so the expected time before a vertex elects
itself is c(d + 1).

Once in regime 3 we claim that with probability
≥ 1 − 1/c we arrive at consensus before incre-
menting k. In this case, we claim that we arrive
at consensus in at most d more steps. Say we go
through and compute the updates for the vertices
one at a time. Let v be the first vertex to elect
himself and have been in the error phase k times,
and say this happens at time t. Because v must
be in the free phase, he was in the error phase
at least two units of time ago. Thus every vertex
at distance ` from v has been in the error phase
k times by time t + ` − 2. Thus if no other ver-
tex elects himself in the next d steps, then each
such vertex at distance ` from v will be in phase
free at time t + ` and will receive the red/blue
message from v. If however, another vertex u
elects herself after having been in the error phase
k times, then the messages will meet in time less
than d, and if they are different colors, the con-
figuration will return to regime 1. The probability
that no other vertex elects herself between time t
and t + d is (1 − 1/a)n(d+1) ≥ 1 − 1/c. This
means the expected value of k upon reaching con-
sensus is 1

c−1 . Thus the total expected time is:
c(d + 1) + d + 1

c−1 (c(d + 1) + 2d)

We will now show a lower bound. While the up-
per bounds work for the broadcast time, the lower
bounds only apply to the collision time. In the
synchronous model the collision time is just 1/2
the broadcast time, which is the diameter. While
we do not show that these are related in the asyn-
chronous setting, we suspect they are, at least, in
many natural settings.

Theorem 18. For any dynamics E[τ(C)] ≥
E[τ(U)]/2, even when each vertex starts assigned
red or blue randomly.

12

Theorems of this flavor are often attributed to
folk-lore in distributed computing (see [Pel00]).

Proof. Let Rring be the space of randomness for
the edge rings. Let R be the space of random-
ness for the initial configuration and the transi-
tions. Let τ(U , rring) = Er[τ(U)|rring], and
let τ(U , rring, r) = Er[τ(U)|rring, r] neither of
which contain any randomness. To prove the the-
orem, it is enough to show that for every rring ∈
Rring : Er[τ(C)|rring] ≥ τ(U , rring)/2, and this
is what we will show. Recall that for any fixed
rring , there exists u, v ∈ V such that for any time
t < τ(U , rring) we have B′

u(t)∩B′
v(t) = ∅, where

B′
u(t) is the set of vertices that could have sent a

message to agent u at time t. Define the bijection
f on R that takes the vertices in B′

u(t) and reverse
their initial colors.

Let A ⊆ R be such that if r ∈ A then
Er[τ(U)|rring, r] ≤ τ(U , rring). Note that if
r ∈ A then f(r) 6∈ A because if the colors of i
and j match at time τ(U , rring) with randomness
r, then they are opposites with randomness f(r)
because the color of u has flipped, and the color of
v has remained the same.

Because f is a bijection, this means that at most
half of r is in A, and thus for every rring ∈ Rring :
Er[τ(C)|rring] ≥ τ(U , rring)/2.

4 Majority Coordination Problem
Unlike the coordination problem, the majority

coordination problem is impossible to do with-
out additional any memory [LB95]. Intuitively, if
there were some dynamics, then it would have to
have some transition from red to blue with non-
zero probability. But this transition could only op-
erate on local information, so you could embed
many of these states inside a larger graph with one
more red then blue. With some probability the dy-
namics would change a red to blue, and then the
graph would have a majority blue, so from this
point it would have to go to all blue.

However, as the next section shows, you can do
this with just one additional bit of memory.

4.1 Achieving Majority Via Weak and
Strong Votes

In this subsection we analyze a simple algo-
rithm that reaches a majority consensus. As was

communicated to us by David Xiao, our algorithm
is very similar to the one previously suggested in
[BTV09]. However, we strengthen and extend the
work in [BTV09] by providing an algorithm which
converges even in cases where the number of red
and blues are equal. Further our analysis provides
explicit convergence time bounds.

Definition 19. The Strong Weak Voter asyn-
chronous edge dynamics (N, Σ, S, A, T) is defined
as follows. Let Σ = {−2,−1, +1, +2}, S =
{−2, +2}, A = ∅, and T (su, sv) =
• If su = sv , the two states remain the same.
• If |su| > |sv| output (su/2, su); similarly if
|sv)| > |su| output (sv, sv/2). (weak voters
follow the sign of strong voters and then they
switch places.

• If su = −sv output (1, 1) and (−1,−1) with
equal probability. (Two strong voters cancel
each other out and become weak, and weak
voters run the voting model).

We prove the following

Theorem 20. The Strong Weak edge dynamics
N = (N, Σ, S, A, T) will reach majority consen-
sus in expected time O(n3) with each vertex v hav-
ing 2-bits of memory.

Proof. The analysis of the algorithm proceeds in
phases. The goal of the first phase is to eliminate
either all 2 or all −2. Note that since the only
way to eliminate a 2 is by interaction with a −2
which makes them both disappear, by the end of
this phase we have the following:
• If there were equal number of 2 and −2’s in

the original signal then there are no 2 and −2
remaining.

• Otherwise, by the same reasoning we will
have 2 remaining if they were the majority
in the original signal and −2 if they were the
majority.

Suppose that vertex v is assigned 2 at time 0 and
vertex u is assigned −2. Note that unless the 2 or
−2 become 1 or −1, both of them preform ran-
dom walks on the graph G. Furthermore, these
walks are independent except when u, v are adja-
cent and the edge connecting them is ringing. By
the cat and mouse game analyzed in Aldous-Fill
book section 6.4.3 it follows that the two random
walks will meet in time O(n2) in expectation.

13

Since the process above can be repeated for
any pair of 2,−2 it follows that by expected time
O(n3) phase 1 has terminated.

We now proceed to phase 2. There are two
cases to consider. In the first case there are no
2,−2 present. In this case we just perform the
voter model which is expected to converge by time
O(n2) (see Proposition 7).

In the second case, there are some 2’s present and
all other vertices are labeled by 1,−1. We claim
that here the process will converge to all 1’s and
2s in time O(n3 log n). Let X(t) denote the num-
ber of positive vertices at time t, where time 0 de-
notes the first time where there are no −2’s. The
analysis is done via comparison of X(t) (the nor-
mal run) to an auxiliary process denoted Y(t) =
{Yv(t)}v∈V . Yv(t) takes the values 1,−1 only.
At time 0 we set Yv(0) = signXv(0). Moreover,
Y follows the same choice of edges as X. When
an edge rings X does the following: it performs a
standard voter model update. However, if the up-
date leads to all −1 configuration then it is can-
celed. Let Y (t) denote the number of positive ver-
tices at time t, where time 0 denotes the first time
where there are no −2’s is X.

It is easy to see that X(t) ≥ Y (t) for all t.
Y(t) performs a random walk reflected at the point
where there is exactly 1 positive elements. There-
fore standard random walk estimates imply that
Z(t) converges to n in expected time O(n2).

These dynamics are also symmetric because if
we assign the positive states to one partition (think
red), and the negative states to the other (think
blue), then the map π(s) = −s preserves symme-
try.

4.2 Majority Coordination in Time Related
to the Diameter

Unlike in the coordination problem, here we
only obtain algorithms with running time that de-
pends on the diameter (not the broadcast time).
It turns out our solution is cleaner in the syn-
chronous case, and so we present that first. The
synchronous algorithm can then be adapted to the
asynchronous edge version via a slight modifica-
tion to the generic reduction given in Theorem 4.
(A common technique in distributed computing).

The idea is to run the Wait-And-See consensus
dynamics but instead of passing a color, point to

the neighbor that you first saw colored (which we
now call the passingup phase), and thus form a
tree of depth at most d with the elected vertex as
the root. The tree then sums up the number of each
color, least significant to most significant bit. The
root looks at which has the greatest most signifi-
cant bit and passes the decision down the tree.

One problem is that the Wait-And-See consen-
sus dynamics may fail to elect a single leader, and
two trees may form. In this case, if the trees pro-
duce different colors, then we can restart.

What makes the problem tricky in the asyn-
chronous case is that a spanning tree formed by
broadcasting may have depth much greater than
the diameter of the tree (if there are many long
paths between two vertices, but only a few short
paths). Such a tree is very inefficient to route mes-
sages across.

The intuitive idea for the algorithm is simple and
borrows heavily from related literature; the formal
exposition, however, is somewhat cumbersome.

Definition 21. The Synchronous Wait-And-See
Majority dynamics (N, Σ, S,A, T) are defined as
follows:

Let A = N and a ∈ A be such that a = cn(d +
1) for some c. Let

Σ = Σe =

color ∈ {blue, red}
colorsaved ∈ {blue, red}
state ∈

{
free, passingup, outofbits
passingdown, error, reset

}

parent ∈ Γ(v) ∪ ∅
digitmod4 ∈ {0, 1, 2, 3}
carryred ∈ Z
carryblue ∈ Z
bitred ∈ {0, 1}
bitblue ∈ {0, 1}

S = {(red, red, free, ∅, 0, 0, 0, 0, 0),
(blue, blue, free, ∅, 0, 0, 0, 0, 0)}

For some agent v, we denote by Kv the set of
other agents with v as their parent.

Let s = {sv}v∈V be the current state.
T (sv, sγv(1), . . . , sγv(deg(d))) is defined as fol-
lows:

14

If statev = reset then
colorv = colorsavedv;
parentv = ∅;
statev = free;
bitredv = bitblue = 0;
if colorsavedv = blue then

carrybluev = 1;
carryredv = 0;

if colorsavedv = red then
carryredv = 1;
carrybluev = 0;

Else if statev = error then
set statev = reset;

Else if (stateu = error for any u ∈ Γv) then:
set statev = error;

Else if (statev = stateγv(1) = · · ·
= stateγv(deg(v) = free) then

with probability 1
a set statev = passingup;

Else if (statev = free and
stateu = passingup for any u ∈ Γv) then

statev = passingup;
parentv = u; (break ties arbitrarily)

Else if (statev = passingup and
stateu 6= free for any u ∈ Γv) then

if (stateu = outofbits for all u ∈ Kv and
bitbluev = bitredv = 0 and
carrybluev = carryredv = 0) then

statev = outofbits;
else if ((digitmod4v = digitmod4pv or

pv = ∅)
and for all u ∈ Kv

digitmod4u =
digitmod4v + 1(mod4)) then

redbitv =
(redcarryv +

∑
u∈Kv

redbitsu) mod 2;
redcarryv =
b(redcarryv +

∑
u∈Kv

redbitsu)/2c;
update bluebitv and bluecarryv similarly.
digitmod4v = digitmod4v + 1 mod 4
ifredbitv > bluebitv then
colorv = red;

ifbluebitv > redbitv then
colorv = blue

Else if statev = outofbits then
if parentv = ∅

statev = passingdown;
else if stateparentv = passingdown then

statev = passingdown;
colorv = colorparentv ;

Else if (statev = passingdown and
for some u ∈ Γv:

stateu = passingdown and
colorv 6= coloru) then

statev = error.

Theorem 22. The Wait-and-See Majority syn-
chronous dynamics N = (N, Σ, S, A, T) will
reach consensus in expected time c

1−c (c(d + 1) +
4d + 2 log(n)) with each vertex v requiring mem-
ory O(log(|Γ(v)|)) where a = cn(d+1). Note that
if c > 1 is a constant then this is O(d + log(n)).

Proof. After expected time c(d + 1) a vertex will
elect himself. If no other vertices elect themselves,
then after t additional steps the nodes exactly t
away from the self-elected vertex will be joined
to a tree with the self-elected vertex node at the
root. If more vertices elect themselves, there will
be more than one tree formed. Upon entering this
tree, each node will enter the passingup state.

We claim that eventually the reds and the blues
are summed up the tree. We will show the follow-
ing:

1 Each node is always computing the same digit
or one greater then its parent and the same
digit or one less then its children.

2 Each node correctly computes what it re-
ports. That is when it enters into a particu-
lar digitmod4 = ` for the hth time, then the
redbit (or bluebit) is correctly computing the
4(h − 1) + `th bit of the number of red bits
(or blue bits) in his subtree.

3 Each node at depth k computes the rth bit no
later than 2d − k + 2r bits after the vertex’s
election.

1) Is by contradiction. This is the way that
things begin because all nodes start computing 0
mod 4. Assume this ever fails to be the case. Then
either a parent is a 2 digits behind a child, or a child
is a digit behind his parent. But the rules explicitly
forbid a child computing more than 1 ahead of his
parent or parent computing further than his chil-
dren.

3) Then follows in part from 2). Because parent
and child never compute bits which are further dis-
tant than 1, the digitmod4 will always keep them
aligned with each other.

4) To see this, image that the tree has depth d
along every path. Now this tree computes slower

15

then the actual tree. However, on this tree it is easy
to see by induction on t, where t is the number of
time steps after the election of the original vertex,
that: at time t = d all the vertices will be in the
passingup state (and computing bit 0); and after
time t ≥ d, a vertex at depth k is computing bit
d(t− 2d+ k)/2e if this is positive, and bit 0 other-
wise. Each node at depth k computes the rth bit no
later than 2d− k + 2r − 1 steps after the vertexes
election. Thus all the bits are computed by the root
in time t = 2d + 2 log(n)− 1 after the election.

It follows that the root will enter state =
outofbits at time at most 2d + 2 log(n) because
after log(n)+1 digits, the correct answer is 0. The
last color that the root has will be the last bit when
either blue or red was greater, and thus will indi-
cated whether there are more blues or reds in the
tree. Thus eventually the root will pass down this
element.

If there is no unique tree, then the above will
happen, but perhaps on several trees. If the trees all
come to the same answer (red or blue), then they
will remain. Otherwise, they will enter the error
state.

Once an error state occurs, then in the next d+
1 steps, each agent will be in error for exactly 1
step unless an agent that has been in error elects
himself in the future. For the sake of contradiction,
let v be the first node to be in error twice. Let t1
be the first time he was in error, and t2 the second
time. It is clear that the first time that his neighbors
were in error were t1− 1, t1, or t1 + 1. However,
t2 > t1 + 3 because agent will be in state reset at
time t1 + 1 and thus unable to be in error in state
t+2. But then agent v must have had a neighbor in
error in time t2−1 or greater, and so that neighbor
must have been the first to be in error twice.

Thus, after an agent enters error he will again
be in state free until another agent elects himself.
This will happen in expected time at most c(d+1)
after there are no error states left. Notice that be-
cause each agent is in error exactly once, the newly
elected passingup cannot propagate to reach the
previous error. Thus we are in the situation before,
where with probability that another vertex elects
himself before entering the passingup state is at
most 1

c .
The probability that two nodes elected them-

selves is at most 1/c, thus the number of times this

must be repeated until there is no error is c
1−c

Thus the total expected time is: c
1−c (c(d + 1) +

4d + 2 log(n))
Note that the only things that need to be stored

that incur super constant memory are parent
which require memory log(|Γ(v)| + 1), and the
carryred and carryblue states, which also require
at most log(|Γ(v)| + 1) (because adding i, j-bit
numbers results in a value of at most i2j which
has at most log(i)+ j bits, and so log(i) carry bits.

The dynamics are symmetric between Σr where
color = red and Σb where color = blue, as can be
seen by the permutation π which maps color = r
to color = b and swaps states bitblue and bitred,
as well as swapping carryblue and carryred.

Theorem 23. The Wait-and-See Majority asyn-
chronous edge dynamics (N, Σ, S, A, T) will
reach consensus in expected time c

1−c (c(d + 1) +
4d+2 log(n)) log(n) with each vertex v requiring
memory O(log(|Γ(v)|)) where a = c(d + 1)n.

Proof. It remains to extend this to the case of
asynchronous edges. By simulating in the naive
way (see Proposition 4), we see that we can do
it with log(n) slow down and by increasing our
memory by a factor or at most |Γ(v)|. However,
we can do better, because the only external in-
formation that in edge needs to compute its next
state is: if a neighbor state is in error, if all
neighbor states are free, if a neighbor state is
passingup, if no neighbors are free, if all children
are outofbits, if parent is on same digitmod4 and
all children are on one greater digitmod4, if a par-
ents state is passingdown, if there is neighbor of
state passingdown with a different color, the sum
of the red and blue bits the children. All this infor-
mation can be stored in Γ(|v|) + 10 bits of private
information.

5 Conclusion and Future Research
We mention some of the future research direc-

tions. These conceptual problems are interdisci-
plinary. All have an important computational com-
ponent but important aspects of these problems
come from sociology, and statistical physics.

The main challenge is to find models that ac-
curately simulate or predict human behavior. Put
very coarsely, in what situations do people be-
have like particles and/or small state automata?

16

The empirical results of [LL96, KSM06, KJTW09,
EMPW09] agreed well with computer simulations
that simulated models related statistical physics
([LL96], [EMPW09], [KJTW09]).

In particle systems and automaton models, the
time to converge is much slower than in our
memory-bounded dynamics models. It would be
interesting to see what happens in more realistic
situations. In particular is the time to converge
polynomial in the diameter of the graph or in the
number of nodes? Would the time to convergence
be predicted better by the diameter, or some sort of
“mixing time”. Of course, it may be that none of
these models predicts reality well.

In part, our study begins to provide a theoretical
foundation and understanding of the empirical re-
sults of [LL96, KSM06, KJTW09, EMPW09]. To
this end, we simplify the model in several ways.
This leads to several dynamics, some of which
seem more robust/realistic than others. It would
be interesting to capture this in a more rigorous
fashion. Our model has several simplifications that
may gloss over important concerns. Future work
could relax some of these assumptions:

• We assume that everyone uses and agrees on
the same original dynamics. It would be very
interesting to model (perhaps through some
kind of notion of evolvability (see [Val09])
how agents could come to agree on a particu-
lar protocol.

• We use bounded memory models to simu-
late humans. Of course, humans can com-
pute much more, and at the same time, per-
haps, less than these models. Perhaps using
different computational bounds, or introduc-
ing a notion of error into the calculations or
communications would better model reality.

• We attempt to minimize the expected time.
In all the aforementioned experiments there
was instead a deadline. Perhaps the optimal
dynamics change when the deadline is very
small or very large.

• We do not have any game theory or selfish
incentives in our models. While the problems
that we study do not require it, there are many
problems that do.

5.1 The Coloring Model and Random and
Planted Sat

The coloring model has attracted a lot of atten-
tion in the social network literature. In this section
we discuss some features of these experiments and
potential explanations. One of the basic question
which was looked at was how does the problem
change as the structure of the network changes?

As the network for the coloring game changes,
two things happens. First, each agents has access
to different information. Secondly, the underly-
ing coloring problem changes, perhaps getting eas-
ier or harder. It is hard to differential one effect
from the other. Did the network become more
powerful or did the problem just become easier?
From the sociology point of view there are very
good reasons to study this, because these models
capture the real-world situations of anti-correlation
(see [KSM06]). However, in this study we simply
things to just study the effect of the network graph.

In [EMPW09] they note that there are “good”
edges, and “bad” edges. The former “good edges”
make the color game more easily solvable by giv-
ing the network more information while not actu-
ally restricting the set of solutions. These edges
are already implied by the constraints of the graph.
The latter “bad edges” restrict the solutions space
of colorings. They then confirm in experiments
that adding containing edges make the solutions
harder (it is solved less often or takes more time)
and that adding redundant edges make the problem
easier. There is a large middle range of edges that
are neither entirely easy nor hard and the effect of
these is not studied

Viewed from complexity stand point the same
phenomenon had already been observed for many
problems, including many satisfiability problems.
For example the work in [FMV06] implies that
message passing algorithms for planted SAT prob-
lems are more rapidly converging for higher densi-
ties of formulas. In fact such sat problems go from
easy (at low densities) to hard, and back to easy
again. Intuitively we expect that the same behav-
ior will be displayed in real social network, esp.
since this behavior is expected even for very sim-
ple local algorithms such as MCMC and message
passing algorithms.

Already there are natural dynamics with no
memory for the coloring model from statistical

17

physics which was used for the empirical color-
ing results [Ene09]. This coincides with the natu-
ral MCMC for coloring, i.e., the Glauber dynam-
ics for low temperature anti-ferromagnatic Potts
model. It would be interesting to try to employ
related analytical tools on social network graphs
with different topologies.

Acknowledgements
EM acknowledge the support by DMS 0548249

(CAREER) award, DOD ONR grant N0014-07-1-
05-06, ISF grant 1300/08 grant PIRG04-GA-2008-
239137. GS was supported by a National Science
Foundation Graduate Fellowship and an internship
at Microsoft Research New England (NERD). The
authors would want to acknowledge the hospital-
ity and interdisciplinary atmosphere at Microsoft
NERD where this this paper was born.

References
[BDD+08] Florence Benezit, Patrick Denantes,

Alexandros G. Dimakis, Patrick Thiran,
and Martin Vetterli. Reaching consensus
about gossip: convergence times and costs.
In Information Theory and Applications,
January 2008.

[BTV09] Florence Benezit, Patrick Thiran, and Mar-
tin Vetterli. Interval consensus: from quan-
tized gossip to voting. In ICASSP 2009,
pages 3661 – 3664, 2009.

[CS73] P. Cliford and A. Sudury. A model for spa-
tial conflict. Biometrika, 60(3):581–588,
1973.

[EMPW09] Daniel Enemark, Mathew McCubbins, Ra-
mamohan Paturi, and Nicholas Weller.
Good edge, bad edge: How network struc-
ture affects a group’s ability to coordinate.
In ESORICS, March 2009.

[Ene09] Daniel Enemark, July 2009. Personal and
email coorespondence.

[FMV06] U. Feige, E. Mossel, and D. Vilenchik.
Complete convergence of message pass-
ing algorithms for some satisfiability prob-
lems. In Proceedings of Random 2006,
pages 339–350. Springer, 2006.

[HL75] A. Holley and Thomas M. Liggett. Er-
godic theorems for weakly interacting in-
finite systems and the voter model. Ann.
Probab., 3:643–663, 1975.

[Jac08] Matthew O. Jackson. Social and Eco-

nomic Networks. Princeton University
Press, 2008.

[KDG03] David Kempe, Alin Dobra, and Johannes
Gehrke. Gossip-based computation of ag-
gregate information. Foundations of Com-
puter Science, Annual IEEE Symposium
on, 0:482, 2003.

[KJTW09] Michael Kearns, Stephen Judd, Jinsong
Tan, and Jennifer Wortman. Behavioral
experiments on biased voting in networks.
Proceedings of the National Academy of
Science, January 2009.

[KKW08] Gueorgi Kossinets, Jon Kleinberg, and
Duncan Watts. The structure of informa-
tion pathways in a social communication
network. In KDD ’08: Proceeding of
the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data
mining, pages 435–443, New York, NY,
USA, 2008. ACM.

[KSM06] Michael Kearns, Siddharth Suri, and Nick
Montfort. An experimental study of the
coloring problem on human subject net-
works. Science, 313:824–827, August
2006.

[KT08] Michael Kearns and Jinsong Tan. Biased
voting and the democratic primary prob-
lem. In Proceedings of the 4th Inter-
national Workshop on Internet and Net-
work Economics (WINE’08), pages 639–
652, 2008.

[LB95] Mark Land and Richard K. Belew. No
perfect two-state cellular automata for den-
sity classification exists. Phys. Rev. Lett.,
74(25):5148–5150, Jun 1995.

[Lig85] Thomas M. Liggett. Interacting parti-
cle systems, volume 276 of Grundlehren
der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sci-
ences]. Springer-Verlag, New York, 1985.

[LL96] Bibb Latané and Todd L’Herrou. Spatial
clustering in the conformity game: Dy-
namic social impact in electronic groups.
Journal of Personality and Social Psychol-
ogy, 70(6):1218–1230, 1996.

[OsFM07] Reza Olfati-saber, J. Alex Fax, and
Richard M. Murray. Consensus and coop-
eration in networked multi-agent systems.
In Proceedings of the IEEE, page 2007,
2007.

[OSH+07] J. P. Onnela, J. Saramäki, J. Hyvönen,
G. Szabó, D. Lazer, K. Kaski, J. Kertész,
and A. L. Barabási. Structure and tie
strengths in mobile communication net-

18

works. Proceedings of the National
Academy of Sciences, 104(18):7332–7336,
May 2007.

[Pel00] David Peleg. Distributed Computing: A
Locally-Sensitive Approach. SIAM Mono-
graphs, Philadelphia, USA, 2000.

[Val09] Leslie G. Valiant. Evolvability. J. ACM,
56(1):1–21, 2009.

19

