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Social behaviors and choices spread through interactions and may lead to a cascading behavior. Under-
standing how such social cascades spread in a network is crucial for many applications ranging from viral
marketing to political campaigns. The behavior of cascade depends crucially on the model of cascade or social
influence and the topological structure of the social network.

In this paper we study the general threshold model of cascades which are parameterized by a distribution
over the natural numbers, in which the collective influence from infected neighbors, once beyond the thresh-
old of an individual u, will trigger the infection of u. By varying the choice of the distribution, the general
threshold model can model cascades with and without the submodular property. In fact, the general thresh-
old model captures many previously studied cascade models as special cases, including the independent
cascade model, the linear threshold model, and k-complex contagions.

We provide both analytical and experimental results for how cascades from a general threshold model
spread in a general growing network model, which contains preferential attachment models as special cases.
We show that if we choose the initial seeds as the early arriving nodes, the contagion can spread to a good
fraction of the network and this fraction crucially depends on the fixed points of a function derived only
from the specified distribution. We also show, using a coauthorship network derived from DBLP databases
and the Stanford web network, that our theoretical results can be used to predict the infection rate up to a
decent degree of accuracy, while the configuration model does the job poorly.

Additional Key Words and Phrases: Social Cascades, General Threshold Model, Stochastic Attachment
Graph, Preferential Attachment Graph

1. INTRODUCTION
Human activity is embedded in a network of social interactions, which can spread
information, beliefs, diseases, technologies, and behaviors. A better understanding of
these social interactions promises a better understanding of and the ability to influ-
ence a wide range of phenomena – financial practices [Banerjee et al. 2013; Coleman
et al. 1957], healthy/unhealthy habits [Mermelstein et al. 1986], and voting prac-
tices [Adamic and Glance 2005], to name a few. In this paper we focus on social
cascades, that start from a few nodes that are initially active or infected and spread
through the edges of the network to other nodes. There are two important factors in
determining the scope and rate of such diffusion: the model of contagions, i.e., how a
node is influenced by its neighbors; and the network topology. We discuss these two
factors separately.
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Social Contagion Models The study of contagions starts from the study of infectious
diseases and epidemics [Jackson 2008]. Social behaviors and decisions are “contagious”
too. The copying of behaviors leading to a social cascade of behavioral changes are at-
tributed to two effects: the informational benefit (inferring hidden, private information
others may know) and direct benefit effects (resulting from coordinated actions or so-
cial pressure).

The general threshold model [Granovetter 1978; Mossel and Roch 2007] is a fairly
general model to capture such intuition. Each node v has a monotone function gv :
{0, 1}|Γ(v)| → [0, 1], where Γ(v) indicates the set of v’s neighbors in a social network.
The function gv represents how much influence (via knowledge, social pressure, etc)
any set of neighbors has upon node v. In the general threshold model, each node also
has threshold thv drawn uniformly and independently from the interval [0, 1]. After an
initial seed set is infected, a node v becomes infected if gv(S) ≥ thv where S is the set
of infected neighbors of v.

The general threshold model captures many other models as special cases. For ex-
ample, a special case is the linear threshold model, in which each edge (u, v) has an
influence weight w(u, v), and the function gv is then the sum of the influence from all
infected neighbors of v. 1 Another example of a class of cascades captured by the gen-
eral threshold model is the independent cascade model [Goldenberg et al. 2001]. In
this model, there is some fixed parameter ρ, and each infected node has one chance to
infect each uninfected neighbor node with probability ρ (iid).

We call contagions simple when the influence gv is submodular—that is gv(S′∪{x})−
gv(S

′) ≤ gv(S ∪ {x}) − gv(S), if S ⊆ S′—and call contagions complex when this fails to
hold (e.g., contagions that require activation from multiple neighbors). In a simple
contagion, the effect of an additionally infected neighbor is marginally decreasing. In a
complex contagion, there could be an initial barrier such that no activation is possible
until the barrier is crossed. There can be synergy between neighbors such that the
total influence from them is not just a simple sum. If we define f(S) as the expect
number of infected nodes when the vertices in S are chosen as the initial seeds, then if
gv is submodular for all nodes, then f is submodular as well [Mossel and Roch 2010].

The monotonicity and submodularity have greatly helped with the analysis of the
diffusion behavior with respect to the choice of seeds. In particular, one can apply
the greedy set cover algorithm to choose the set of k best seeds to maximize the final
scope of the contagion. This will give a 1 − 1/e approximation to the maximum scope
obtained by any k seeds. In contrast, for the general threshold model, this is a very
hard question and not much is known in the literature other than that is is NP-hard
to even approximate [Kempe et al. 2003]. The two special cases, the linear threshold
model and the independent cascade model, have received a lot of attention because
they both have the submodular property [Kempe et al. 2003].

While this result has been well recognized and celebrated, a natural question one
may ask is whether the submodularity assumption holds in reality and whether the
result can be generalized. Sociologists observe that in the case of the adoption of pricey
technology innovations, the change of social behaviors, and the decision to participate
in a migration, etc [Coleman et al. 1966; Macdonald and Macdonald 1964], an addi-
tional confirmation is crucial, suggesting the model of complex contagion. In practice,
threshold distributions are usually computed from data of contagions by using the em-
pirical fraction of agents who adopt directly after k ties adopt, given that they had not
previously. The distributions found depend on which cascades are analyzed, however,

1Often an additional restriction is imposed that for all nodes v:
∑
u∈γ(v) w(u, v) ≤ 1 to ensure that gv is

always in [0, 1].



this conditional probability typically increases with k until some small constant of at
least 2, and then then tapers off.Examples include LiveJournal [Backstrom et al. 2006],
DBLP [Backstrom et al. 2006], Twitter [Romero et al. 2011], and Facebook [Ugander
et al. 2012]. Some of these data sets indeed show diminishing return of the influence
function, but others do not. They find that the second affected neighbor often has more
marginal effect than the first. Additionally, the study in the Facebook data set shows
that the number of connected components in the active neighbors is a much better
predictor on the probability of joining Facebook, compared to the number of active
neighbors.

Work done on complex contagions is much more limited and so far focused on a sim-
plistic single threshold model called k-complex contagions. In k-complex contagions,
all nodes have the same threshold k. A node becomes active if and only if at least k
of its neighbors have been activated. It has been shown that a k-complex contagions
is generally slower and more delicate than simple contagion k = 1 [Ebrahimi et al.
2014, 2015; Ghasemiesfeh et al. 2013]. One of the limitations of this k-complex conta-
gion model is the dependency on the fixed threshold k for all nodes in the network. In
practice there are people who like to try out new things and are more risk driven while
others are risk averse. Therefore the threshold function is not necessarily uniform.

In this paper we consider one step of generalizing the k-complex contagion model
by considering the threshold coming from a distribution D on positive intergers. The
initial adoption barrier can still exist which makes the adoption function to be non-
submodular. We provide analysis on the spreading behaviors on a general family of
networks that grow over time.
Stochastic Attachment Network Model. In addition to a model of cascade, the
model of network is also important. A lot of mathematical models have been developed
to capture some of the attributes of real world social networks. A celebrated set of re-
sults are the family of small world graphs [D.Watts et al. 2002; D.Watts and S.Strogatz
1998; Kleinberg 2000, 2001; Newman and Watts 1999] and the family of graphs that
produce power law degree distribution [Barabási and Albert 1999; Kleinberg et al.
1999; Kumar et al. 2000, 1999].

In this work we examine a growing network in which newcomers connect stochas-
tically to nodes already in the network. This family of networks, which we call the
stochastic attachment network model, has the preferential attachment network model
as a special case. In the preferential attachment models [Barabási and Albert 1999],
nodes arrive in a sequential order. Each node chooses m edges from the nodes that
arrive earlier. When an edge is added, the neighbor is selected with probability pro-
portional to its current degree. This model generates graphs with a power law degree
distribution and has been used to explain the observation in web graphs and social
networks. We examine a more general model in which new edges are not necessarily
preferentially attached to existing nodes and each newcomer may have a varying num-
ber of edges. The key feature that is used in our analysis is that the network is formed
over time, when new nodes arrive sequentially and attach to existing nodes.

We study contagions on both directed and undirected version of the stochastic at-
tachment network. In the first case, we consider each edge issued by a newcomer u as
directional, pointing to an earlier node v. This edge can be interpreted as u following
edge v. A social contagion spreads in the reverse direction of an edge. This models infor-
mation spreading in Twitter-type social networks, in which messages or information
only travels along the direction of the edges. A node u will be influenced only by the
neighbors u follows and not the neighbors that follow u. In the second case, all edges
are treated as undirected, allowing contagions to spread in both directions. For exam-
ple, consider a co-authorship network in which a new researcher choose to work with
senior researchers/advisors, but here information or social influence is bidirectional.



An additional consideration is where the initially infected in the contagions reside
within the network structure. In this paper we consider the scenario when some entity
is trying to initiate a cascade. The entity is allowed to choose where the nodes go. We
model this case by letting the seed equal the first nodes (in arrival order) or a subset
of these nodes.

In our earlier work we show that due to the evolutionary nature k-complex conta-
gions spread to the entire network in preferential attachment models and the conta-
gion spreads very fast [Ebrahimi et al. 2014], when k < m and the first few nodes in
the arriving order are selected as the initial seeds in both the directed and undirected
cases. This paper provides significant generalizations in both models of contagions and
models of networks. The proof ideas are also completely new.
Our Results In this paper we study the behavior of a contagion following a general
threshold model on both directed and undirected stochastic attachment graphs. We
provide the most detailed analysis in the case of preferential attachment and later
generalize to other scenarios.

We show that the number of infected nodes depends critically on the threshold dis-
tribution D. In the directed case, we derive a function f : [0, 1] → [0, 1] describing
the probability of the i-th arriving node being infected, which depends only on a sin-
gle number summarizing the status of the nodes with earlier arriving order, i.e., their
threshold and whether they are infected or not. This function f has fixed points, which
may be either stable or unstable. The ratio of the infected nodes in the network con-
verges to one of these stable fixed points with high probability. When there are mul-
tiple fixed stable points, the contagion may converge to any one of them with at least
constant probability.

In the undirected case, we note that the number of infected nodes will be no fewer
than the directed case, since the edges can possibly spread social influence both ways.
However, we show something much stronger than this, that, with high probability,
the total number of infected nodes will always be a constant fraction higher than the
highest stable fixed point of function f , when non-zero stable fixed points exist.

We performed both simulations and experiments with real world data sets. On var-
ious stochastic attachment graphs we observe the same behaviors as predicted in the-
ory. We also tested real world networks. We used two datasets, the coauthorship de-
rived from DBLP database which is an undirected graph and the Stanford web graph
(which is naturally directed). On both datasets we infer the arriving order by using
k-core decomposition – i.e., removing nodes with degree k for k starting from 1 recur-
sively. We show that using the stochastic attachment model one can get fairly accurate
prediction of the contagion rate. On the other hand, if we use the same degree distri-
bution and generate a graph using the configuration model2, on which the contagion
behaviors differ significantly from that of the real netwrok. These experiments confirm
the validity and utility of our model and analysis in helping to understand and predict
contagions on real world graphs.

2. PRELIMINARIES
Definition 2.1. A General Threshold Contagion GTC(G,D, I) is a contagion

which starts from a set of initial nodes I and spreads over the network G. Each node
v has a threshold Rv which is drawn from distribution D for which the range is all
positive integers. The contagion proceeds in rounds. At each round, each vertex v with
at least Rv infected neighbors becomes infected.

2In a configuration model we fix the degree distribution first and then match the half edges at the nodes
randomly.



Definition 2.2. The Stochastic Attachment Model, SAM (n) models a network
with a growing number of vertices and edges. Denote by M the distribution of outgoing
degree, with range between 1 and cu and E[M ] = µM . We start with a complete graph
on cu + 1 nodes. At each subsequent time step t a node v arrives and adds m edges
to the existing vertices in the network, where m is chosen from M . Denote the graph
containing the first n−1 nodes as Gn−1. For each new vertex, we choose w1, w2, · · · , wm
vertices, possibly with repetitions from the existing vertices in the graph. Specifically,
nodes w1, w2, · · · , wm are chosen independently of each other conditioned on the past.
For each i, wi is selected from the set of vertices of Gn−1 using an attachment rule A.
Then we draw edges between the new vertex and the wi’s. Repeated wi’s cause multiple
edges. Also each node creates a self loop as well.

The stochastic attachment model is a general model that captures how nodes and
edges are added over time. It contains the preferential attachment graph model as
a special case, in which each node issues the same number of edges and a new edge
attaches to a node u with probability proportional to u’s current degree. In this case
the degree distribution becomes power law. We remark that the stochastic attachment
model is more general and may contain graphs with non-power law degree distribution
(e.g., if the edges are attached uniformly at random).

In this paper we consider two cases, when the edges are considered directional or
undirectional. In the directed case, each edge is issued by a node u and points towards
a node v earlier in the arriving order. We consider this as u following v. Thus contagion
propagates in the reversed direction of edge uv. A node u is infected if the number
of infected nodes that u follows is greater than its threshold. In the undirected case,
infection can happen in both directions. We denote the former as a directed contagion
GTD(G,D, I) on a graph G with initial seeds in I and threshold distribution D, and
the latter as undirected contagion.

In this paper the initial seeds are chosen as a fraction (or all) of the first few nodes.
When considered G as a graph in which the thresholds of the nodes are chosen when
they appear, the contagion process is determined. In our analysis, however, we choose
to delay revealing the thresholds of nodes in G. Due to space constraint, most of the
technical proofs are put in the full version.

3. DIRECTED NETWORK
In this section, we analyze the number of nodes infected with a general threshold con-
tagion model on a directed stochastic attachment graph. For the discussion below, we
first focus on the case when each node chooses a fixed number of m edges for simplicity.
At the end of this section we report how the results generalize to the other scenarios.

Since we are considering a directed contagion, we only have to consider the effect of
outgoing edges of a node. There are at most m of them for each node u and these edges
point to nodes that arrive earlier than u. Thus we can go through the list of nodes in
their arriving order to calculate whether a node will be infected. Each node is only
evaluated once. The first m nodes are the initial seeds I. We start at node of index
m + 1 and process each of the following nodes in their order of arrival in the graph.
When a node is being processed we reveal both its threshold and its outgoing edges,
and based on its threshold and the status (being infected or not) of its outgoing edges,
it is determined if the current node will be infected or not. To evaluate this probability
we give some definitions.

Assume that node u is the i-th node in the arrival order in G. Let Vi−1 be the set
of first i − 1 nodes in G and Xi−1 be the set of infected nodes in Vi−1. If u’s threshold
is Ru = k, u is infected if and only if among the m edges u issues, at least k of them
land in nodes in Xi−1. Now consider a specific edge of u, we define Yi as the probability



that this edge lands in an infected node (e.g., in Xi−1). Yi depends on the attachment
rule A and the set of nodes that are infected so far. For example, if the edges of u
are uniformly randomly selected among the nodes in Vi−1, then Yi is the ratio of the
infected nodes |Xi−1|/|Vi−1|. If the edges of u are preferentially attached, i.e., with
probability proportional to the current degree of the nodes, Yi is the ratio of the infected
degree Yi =

∑
v∈Xi−1

deg(v)/
∑
w∈Vi−1

deg(w), Here deg(v) is the total degree of each
node v (counting both incoming and outgoing edges).

Next we can compute the probability of node u being infected when its threshold is
Ru = k. For that to happen, among the m edges of u, at least k of them need to land on
a node in Xi−1. Now,

Prob{Infection of u|Ru = k} =

m∑
`=k

(
m

`

)
Y `i (1− Yi)(m−`) (1)

Now, the probability of infection of node u is described by a function f :

Prob{Infection of u} = f(Yi) =
∑
k

Prob[Ru = k]

m∑
`=k

(
m

`

)
Y `i (1− Yi)(m−`) (2)

Therefore, the random process {Yt : t = m + 1, ..., n} in SAM(n), is a Markov chain
that only depends on the previous state of the process. To understand the contagion we
first need to understand this Markov process and in particular the function f . First f
is a polynomial function. Thus it is continuous and differentiaable. It is also not hard
to see that the function f is nondecreasing (with proof in the full version). Second, f
maps values of [0, 1] to image domain [0, 1]. By Brower’s fixed point theorem f has fixed
points. We will show that the behavior of the contagion depends crucially on the fixed
points of this function f . Let’s first give the formal definition of fixed points of f .

Definition 3.1. Given a function f : [0, 1] → [0, 1], c is a fixed point of f(x) if and
only if f(c) = c. Let Qf be the set of fixed points {x : f(x) = x}.

— A fixed point c is a stable point if and only if there exists δ > 0 such that f(x) < x if
x ∈ (c, c+ δ] and f(x) > x if x ∈ [c− δ, c). Let Sf be the set of all stable points.

— A fixed point c is a unstable point if and only if there exists δ > 0 such that f(x) > x
if x ∈ (c, c + δ] and f(x) < x if x ∈ [c − δ, c). Uf is defined as the set of all unstable
points.

— A fixed point c of is a touch point if and only if ∃d > 0,∀x ∈ [0, 1] : 0 < |x − c| <
d, f(x) > x or ∀x ∈ [0, 1] : 0 < |x− c| < d, f(x) < x. Let Tf be the set of touch points.

In the following we first report the detailed analysis for the case of preferential
attachment graphs. In the last subsection we show how to generalize it to the case of
uniform random attachment.

3.1. Main Results For Preferential Attachment
Now we are ready to state the main theorem that characterizes the behavior of general
threshold contagion on preferential attachment graphs PAm(n).

THEOREM 3.2. Let MG be the stochastic Markov process defined on a directed
GTC(PAm(n),D, I) contagion. The behavior of MG depends on the values of the stable
fixed points of function f(x) defined in Equation 2 as follows:

(1) If f(x) has a unique fixed point y∗ which is stable, Yn converges to y∗. In the follow-
ing three results, each subsequent result is stronger but only applicable under more
restrictive settings.



(a) ∀δ > 0 and ξ > 0,

Prob[|Yn − y∗| < δ] = 1−O(
1

nξ
)

(b) If f ′(y∗) < 1, then ∀γ, (1− f ′(y∗))/2 > γ > 0, and ξ > 0, we have

Prob[|Yn − y∗| < O(n−γ)] = 1−O(
1

nξ
)

(2) If f(x) has a finite number of fixed points, then
(a) limn→∞ Yn exists almost surely, and Prob[limn→∞ Yn ∈ Qf ] = 1.
(b) ∀s ∈ Uf , Prob[limn→∞ Yn = s] = 0.
(c) ∀s ∈ Sf ∪ Tf , Prob[limn→∞ Yn = s] > 0.

(3) If f(x) has an infinite number of fixed point, the process {Yi} is a martingale process
and converges almost surely to some random variable Y .

3.2. Proof of Theorem 3.2
Let’s first understand the fixed points of the function f . In particular, we would like to
understand the recursive structure for Yi, i.e., the probability for a specific edge from
the ith arriving node landing in an infected node. This depends on the edge attachment
rule and thus needs to be done case by case. In the following we present the analysis
when the selection rule is preferential.

Assume that i nodes have arrived and picked their edges. We have a total of mi
edges which contribute to a total of 2mi degrees (including both outgoing and incoming
degrees). Let Ii be the number of infected degrees (shooting from or landing on an
infected node) and Ui be the number of non-infected degrees (shooting from or landing
on a non-infected node). Ii + UIi = 2mi and Ii = 2miYi. Given information Fi at time i
which consists of the subgraph SAm(i) and all the threshold of nodes with index smaller
than i, we want to compute the value of Yi+1 when the i+ 1th node ui+1 is added, given
values of Y1 up to Yi. For this there are three components that contribute to Yi+1:

— First from previous steps we have Ii = 2miYi infected degrees.
— If the new added node ui+1 is infected, then the m degrees of the edges that ui+1

issue are infected. Thus, ui+1 will contribute f(Yi)m infected degree in expectation,
where f(Yi) is the probability of ui+1 being infected.

— When ui+1 is added, it issues m edges to previous i nodes. Some of these neighbors
are already infected, so the new edges will contribute mYi degrees in expectation.

Define Bin(n, p) as the random variable following binomial distribution, i.e., the total
number of successful events out of a total of n events when each event succeeds with
probability p independent of the others. Hence we get the following recurrence:

(2m(i+ 1))Yi+1|Fi = 2miYi + Bin(m,Yi) +m · Bin(1, f(Yi)), Yi ∈ [0, 1],∀1 ≤ i ≤ n.

It can be decomposed as predictable part g and noise part U

Yi+1 − Yi|Fi =
1

i+ 1
(g(Yi) + Ui+1) for i ≥ m (3)

where g(Yi) =
1

2
(f(Yi)− Yi), (4)

and Ui+1 =
1

2
(Bin(m,Yi)/m+ Bin(1, f(Yi))− Yi − f(Yi)) (5)



Define Wi =
∑i
k=m+1 Uk/k. Because E[Ui+1|Fi] = 0 and |Ui+1| ≤ 1, {Wi : m < i ≤ n} is

a martingale and we can rewrite the process as

Yt = Ym +

t∑
k=m+1

1

k
g(Yk−1) +Wt, for i ≥ m (6)

3.2.1. Proof of Theorem 3.2 1a. We first analyze the case when f has a unique stable
fixed point (Theorem 3.2 1a). The results of this section will be used in the multiple
fixed point settings. Given an interval I of length 2δ centered at the fixed point y∗ for
the function f , we will show that the process will stay in the interval with probability
1−O(1/nξ).

Our proof has two parts. First, Lemma 3.3 shows that the noise part, Wi in Equa-
tion 6, is Cauchy-like. This says that after a sufficiently large time τ0 the distance of
two noise terms, |Ws − Wt|, for s > t > τ0, would be small. Second, in Lemma 3.4,
given an interval I, if at certain time τ0 the noise part is smaller than the width of the
interval, then the process after O(τ0) time will stay within I forever. The proofs of the
two Lemmas are put in the full version.

LEMMA 3.3. Given δ1, ε1 > 0, let τ0 = 2 ln(1/(2ε1))/δ2
1 and s, t such that ∀s > t > τ0,

then Prob[|Ws −Wt| < δ1] < ε1.

LEMMA 3.4. Given d > 0, let I = (y∗− d, y∗+ d) ⊂ [0, 1] be an open interval contain-
ing the fix point y∗, and suppose there exists τ0 such that for all s, t where s > t > τ0,
then |Ws −Wt| < d/4. There exists τ1 = O(τ0) such that ∀k > τ1, Yk ∈ I.

Combining Lemma 3.3 and 3.4 we finish the proof that the ratio will converge to any
neighborhood I of the stable point with negligible probability, and that finished our
proof of Theorem 3.2 1a.

3.2.2. Proof of Theorem 3.2 1b. Theorem 3.2 1b is a stronger result than Theorem 3.2 1a.
In both cases the fixed point y∗ is at the interior of interval [0, 1]. It says that when
f ′(y∗) < 1 the process {Yt} will converge to the fixed point y∗ and also bounds the
convergence rate. We decompose the process into two phases: In the first phase with
high probability the process would enter and stay in the good interval I which will be
defined later; in the second phase the process would approach y∗ fast.

Now we define the good interval I. Recall that f ′(y∗) < 1 and g(y) = (f(y) − y)/2.
Define 1−f ′(y∗)

2 > γ > 0. Take γ1, γ2 such that γ < γ2 < γ1 < |g′(c)| ≤ 1/2. Take d > 0
such that

x ∈ (y∗, y∗ + d], g(x) < −γ1(x− y∗), and x ∈ [y∗ − d, y∗), g(x) > γ1(y∗ − x). (7)

Now we define the good open interval I as (y∗ − d, y∗ + d). Let

dt = |y∗ − Yt|, δt = Adt1/t
γ

where t ≥ t1 and the value of A and t1 will be specified later. We will prove by induction
that with high probability ∀t > t1, dt < Cδt for some constant C > 0.

Definition 3.5. We call σ is a bad transition point if dσ−1 < δσ−1 and dσ ≥ δσ, and τ
is a good transition point if dτ−1 ≥ δτ−1 and dτ < δτ .

Note that by taking large enough A we can have dt1 < δt1 . So dt < δt where t ≥ t1
before the first bad transition point. The following lemma shows that after certain
time t1 whenever there is a bad transition point σ > t1 there exists a good transition
point τ > σ; moreover for all s between σ and τ the distance ds < Cδs.



LEMMA 3.6. Assume that y∗ ∈ (0, 1). If ∃t1 such that ∀k ≥ t1, Yk ∈ I. Given ξ > 0
there exists C > 0 such that if there exists a bad transition point σ where σ > t1 and
σ = Ω(log(n)), there exists a good transition point τ > σ. Moreover ∀k, dk < Cδk where
σ < k ≤ τ with probability 1−O(1/nξ).

PROOF. The intuition of this proof is as follow: we run the process from time σ to
(1 + ρ)σ where ρ is a small constant independent of the process, and we prove stronger
claims as follows

(1) There exists t where σ < t ≤ (1 + ρ)σ such that dt < δ(1+ρ)σ < δt.
(2) dk < Cδk for all k where σ < k ≤ τ and τ is the minimum t in the first claim.

Due to space constraints we put the proofs of the two claims in the full version. With
these two lemmas, we can prove the Theorem 3.2 1b: for any n, Prob[|Yn − y∗| <
O(n−γ)] = 1−O(1/nξ).

For n = t1 the statement of Theorem 3.2 1b is trivially true by taking proper constant
A. Now, if there exists T where t1 < T ≤ n such that dT > CδT then there exists the
first bad transition point σ1. By Lemma 3.6 there exists the minimum good transition
point τ1 > σ1 and T is not between σ1 and τ1. Therefore we must have t1 < σ1 <
τ1 < T ≤ n. Inductively we find the next bad transition point σi+1 and again by the
Lemma 3.6 there exists a good transition point τi+1 such that

σi < σi+1 and σi < T ≤ n for all i > 0.

Because {σi}i>0 is an increasing series, T does not exists and this leads to a contradic-
tion.

Apply union bound, all the conditions would fail with probability O(1/nξ) +∑n
i=t1

O(1/nξ) ≤ O(1/nξ−1).

3.2.3. Proof of Theorem 3.2 2 . In this case f has multiple stable fixed points. We use
the framework of stochastic approximation algorithm.

Definition 3.7. A stochastic approximation algorithm Xn is a stochastic process
taking values in [0, 1], adapted to the filtration Fn, that satisfies

Xi+1 −Xi|Fi = γi+1[g(Xi) + Ui+1]

where γn, Un ∈ Fn, g : [0, 1] → R and the following conditions hold almost surely, (1)
cl/n ≤ γn ≤ cu/n, (2) |Un| ≤ Ku, (3) |g(Xn)| ≤ Kg, (4) |E[γn+1Un+1|Fn]| ≤ Keγ

2
n, where

the constants cl, cu,Ku,Kg,Ke are positive real numbers.

In our problem, with filtration Fi = (Y1, ..., Yi) it satisfies

(1) γi+1 = 1/(i+ 1),
(2) Ui+1 = 1

2 (Bin(m,Yi)/m − Yi + Bin(1, f(Yi)) − f(Yi)) is a martingale with Ku = 4m
and E[γi+1Ui+1|Fi] = 0,

(3) g(Yi) = E[(Bin(m,Yi) +m ·Bin(1, f(Yi))− 2mYi)|Yi]/2m = (f(Yi)− Yi)/2 is bounded
by Kg = 1,

(4) |E[γn+1Un+1|Fn]| = |E[Ui+1

i+1 ]| = 0 ≤ Keγ
2
n, where Ke = 1.

To prove this convergence property, we can apply the theorem in [Pemantle et al.
2007] stated as follows,

THEOREM 3.8. If a stochastic approximation algorithm Yn with continuous feed-
back function g

(1) [Corollary 2.7 in [Pemantle et al. 2007] ] limn→∞ Yn exists almost surely and is in
Qg = {x : g(x) = 0}



(2) [Theorem 2.9 in [Pemantle et al. 2007] ] Suppose there is an unstable fixed point p
and an d > 0 such that ∀x : 0 < |x − p| < d and Kl ≤ E[U2

n+1|Fn] ≤ Kg holds for
some Kl,Kg > 0, whenever 0 < |Yn − p| < d.Then P [Yn → p] = 0.

(3) [Theorem 2.8 in [Pemantle et al. 2007]] Suppose p ∈ Qg is a stable fixed point then
P [Xn → p] > 0

(4) [Corollary 2 in [Pemantle 1991]] If p ∈ Tg and f is differentiable, P [Xn → p] > 0

Now we can prove the convergence property,

PROOF. The first statement is a result of Theorem 3.8 (1) because g is a polynomial.
The second is a result of Theorem 3.8 (1) and 3.8 (2). However to apply Theorem 3.8
(2) we have to prove E[U2

i+1] is bounded below by constant KL which in our case is
sufficient to prove the variance of Bin(m,Yi)−mYi +mBin(1, g(Yi)−mg(Yi) is nonzero
when 0 < |Yi − p| < d. Formally,

Var(Bin(m,Yi)−mYi +mBin(1, g(Yi)−mg(Yi))

= Var(Bin(m,Yi)) + Var(mBin(1, g(Yi)) + 2 Cov(Bin(m,Yi),mBin(1, g(Yi))

≥mYi(1− Yi) +m2g(Yi)(1− g(Yi)) > 0

The last inequality comes from Cov(Bin(m,Yi),mBin(1, g(Yi)) ≥ 0 by FKG inequality.
Finally, Theorem 3.8 (3) and 3.8 (4) show that Yi will converge to arbitrary stable or
touch point with positive probability.

3.2.4. Proof of Theorem 3.2 3. In the spectial case when f has an infinite number of
fixed point, because f is a polynomial with degree at most m, we have f(x) = x by
Fundamental Theory of Algebra. As a result, the predictable part g(x) = 0 in (4) and
Ui is a martingale difference such that E[Ui+1|Fi] = 0 and |Ui+1|Fi| ≤ 1. Therefore our
random process {Yi} is the martingale Yi =

∑i
`=m+1

1
` {U`}. To prove the convergence

of martingale {Yi} we can use standard martingale convergence theorem (c.f. Theorem
1 in chapter 7.8 in [Grimmett and Stirzaker 2001]) to prove convergence. Because
E[Y 2

i ] =
∑i
`=m+1

1
`2 |U`|

2 ≤
∑i
`=m+1

1
`2 < ∞ for all i, there exists a random variable Y

such that Yi converges to Y almost surely.

3.3. General threshold cascade on stochastic-attachment graph
The analysis we did before is for the case of preferential attachment graph. Here we
give the analysis for the more general case, when 1) the number of edges of the new-
comer to previous nodes is sampled from a bounded distributionM with range between
1 and cu and E[M ] = µM ; 2) when the attachment rule can be either preferential or
uniformly at random.

Similar to analysis in Section 3.2, we first look at the case of preferential attachment
when each newcomer may choose different number of edges. Now we consider {Yi : i =
cu+ 1, ..., n}, which is a Markov process and cu is the maximum number of edges in the
distribution M . Similarly, we can compute the probability of i-th node being infected
when the threshold is Ri = k and mi = m edges go to previous nodes Vi−1,

Prob[Infection of i-th node|Ri = k,mi = m] =

m∑
`=k

(
m

`

)
Y `i (1− Yi)(m−`)

Now, the probability of infection of i-th node given the forward degree mi = m is de-
scribed by a function fm0 :

fM0 (Yi) = Prob[Infection of i-th node] =
∑
k

Prob[Ri = k]

m∑
`=k

(
m

`

)
Y `i (1− Yi)(m−`)



Let di be the total number of endpoints at time i, then di + 2mi+1 would be the total
number of end point at time i + 1 if the forward degree of (i + 1)-th node is mi+1, and
the recurrence relation of Yi can be written as follows,

Ycu+1 ∈ [0, 1], initial condition (8)
di+1Yi+1|Fi = diYi + Bin(mi+1, Yi) +mi+1 Bin(1, f

mi+1

0 (Yi)) for i > cu + 1 (9)

For the case of uniform random attachment when each newcomer may choose differ-
ent number of edges, we define {Zi : i = cu + 1, ..., n} as a Markov process, where Zi
is the ratio of infected nodes. If we define fm1 (Zi) be the probability of i-th node being
infected with m edges go to previous nodes which is

fM0 (Yi) =
∑
k

Prob[Ri = k]

m∑
`=k

(
m

`

)
Z`i (1− Zi)(m−`)

We can get the recursive relation as follow:

Zcu+1 ∈ [0, 1], initial condition (10)
(i+ 1)Zi+1|Fi = iZi + Bin(1, fmi1 (Zi)) for i > cu + 1 (11)

Now we are ready to state the theorem.

THEOREM 3.9. Let {Yt} and {Zt} be the stochastic process definition above and a
directed GTC(Gα,m(n), D, I) contagion.

(1) For preferential attachment, the stochastic process Yt would converge almost surely
to the stable fix point of E[MfM0 (y)]

E[M ] .
(2) For uniform random attachment, the stochastic process Zt would converge almost

surely to the stable fix point of E[fM1 (y)].

Again the study of the behavior of Yi and Zi uses the framework of stochastic approxi-
mation algorithm 3.7.

4. UNDIRECTED PREFERENTIAL ATTACHMENT GRAPHS
In this section, we analyze the Markov process MG when the underlying network is
an undirected preferential attachment graph. Here we categorize the behavior ofMG
based on the values of the stable fixed points of the directed version ofMG .

THEOREM 4.1. Let MG be a stochastic Markov process defined on an undirected
preferential attachment graph PAm(n) with infected ratio Ỹn. Suppose f(y) is the func-
tion defined on a directed PAm(n) in Equation 2. We have:

(1) If 1 is a fixed point of f , 0 is not a fixed point of f and the initial infected nodes
I 6= ∅, then the whole network will be infected, i.e., Prob[Ỹn = 1] = 1− o(1).

(2) If none of 0 or 1 is a fixed point of f , thenMG process will converge to a value greater
than the highest stable fixed point c = max(Sf ) of MG with high probability. That
is, Prob[Ỹn > c + m∆] = 1 − o(1) such that ∀∆ where 0 < ∆ < (1 − c)r/4 for some
r such that (1/r)1/r ≥ 4 (7mK/p∗)

m, where K is the highest possible threshold of
D and p∗ < 1

m(1−c)
∑m−1
s=0 Prob[Rt = s]

∑m−1
`=s

(
m
`

)
c`(1 − c)(m−`) and c is the highest

fixed point.

In our proof, we will restrict how the contagion can proceed, which will serve to es-
tablish a lower bound for the infection ratio of the undirected contagion. First we only
consider the contagion passing from low indexed nodes to high indexed nodes – just as
in the directed case; then we only consider the contagion passing from high indexed



nodes to low indexed nodes. We call these two processes the forward and backward
processes respectively. We will repeat these processes twice. Each time, we only need
to reveal the edges that can help spread an infection (i.e., the edges that point to an
infected node), and the remaining edges are revealed later. We will use this to carefully
manage (in)dependence so that we may employ concentration bounds.

The intuition in the analysis is the following. The first forward process is essentially
the same as the directed contagion case. If there are non-zero stable fixed points then
the contagion will infect a constant fraction of nodes. In fact, since the stochastic pro-
cess in the directed case converges fast, among the nodes of high indices there is a good
fraction of infected nodes and these infected nodes are roughly uniformly distributed.
Therefore in the first backward process, these nodes will infect the nodes with small
indices almost surely, which will continue to boost the propagation in the next forward
round. The following analysis will make this rigorous.

Let n1 = C log(n) and n2 = µn where constants C and µ will be specified later. In our
first forward/backward process, we will actually only process nodes from 1 to n2 and
back to 1, but in the second round, we will process all nodes with index from 1 to n and
back down to 1.

For the sake of the proof, we divide these processing steps up into three phases
and presented it in the following subsections. The goal is to show that some specific
property happens at the end of each phase:

(1) First forward and backward contagion: Run the infection in the forward direction
from node 1 to the node with index n2. Denote by IFt the indicator variable on
whether node t is infected in the first forward process and PFt the probability of
node t being infected, i..e, PFt = Prob[IFt = 1], t ≤ n2. Then we run the backward
contagion from n2 back to 1. Define IFBt and PFBt accordingly. We denote by Y FBt
the fraction of infected nodes after the first forward and backward process for all
nodes with index between 1 and t. Lemma 4.2 and 4.3 show that all the first n1

node will be infected with high probability, i.e., Prob[Y FBn1
= 1] is high.

(2) Converge to highest fixed point: Conditioned on Y FBn1
= 1, run the second forward

infection to node n2 again. We show that the infection ratio after the first n2 nodes,
denoted by Y FBFn2

, is around the highest stable fixed point c (Lemma 4.4).
(3) Constant separation: Conditioned on the infection ratio Y FBFn2

being around the
highest stable fixed point, c, run the infection in the forward direction from n2

to n and backward from n to 1 to show that the infection fraction, Y FBFBn , is
incremented by a constant in the second backward round (Lemma 4.5 and 4.6).

Let MF
ρ (s, t) be the event that all nodes with index within (s, t] are infected with

probability greater than ρ after the first forward process. Similarly define MFB
ρ (s, t)

and MFBF
ρ (s, t) accordingly after the first backward process and the next forward pro-

cess respectively.

4.1. First forward and backward contagion
After the first forward phase, the number of infected nodes is a constant, around one
of the (non-zero) stable fixed point. The crucial part is to examine what happens in
the first backward phase. We use two facts: fixing a node k, k ≤ n1, all neighbors of
node k will have a large probability to get infected, in the first forward phase (proven
in Lemma 4.2); furthermore, with a fact that with high probability, early nodes have
large degree (proven in the full version). Finally, we use a union bound to prove that
all nodes k where k ≤ n1 will get infected with high probability. Some of the technical
proofs are put in the full version.



LEMMA 4.2 (UNIFORMITY INFECTION). Fix a node k where k ≤ n1, for all n1 < t ≤
n2. Let N t

k be the event that node k is the neighbor of node t. Then there exists a constant
p∗ > 0 such that for all Ft−1 we have

Prob[IFt = 1|Ft−1,M
F
ρ (n1, n2), N t

k] ≥ p∗.

Here recall that Ft−1 is all the information at time t−1, i.e., the preferential attachment
graph and threshold values for all nodes with index less than t − 1, and MF

ρ (n1, n2) is
the event that all nodes with index between n1 and n2 are infected with probability at
least ρ after the first forward round, .

Apply Lemma 4.2 with a fact (proven in the full version) that with high probability,
early nodes have large degree, the following lemma finishes the first phase by proving
that Y FBn1

= 1 with high probability. Specifically, we show that every node k, k ≤ n1,
will be infected with high probability in the first backward infection and then taking a
union bound.

LEMMA 4.3. Consider the network generated by the preferential attachment model
with only the top n2 nodes, PAm(n2), Prob[Y FBn1

= 1] > 1−O(1/ log n2).

4.2. Converge to highest fixed point
Now we enter the second phase to show that the ratio, Y FBFn2

will be around the highest
stable fixed point c. We consider the following two events:

(1) Event Y FBn1
= 1;

(2) Event that Y FBFn2
would be around the highest stable fixed point c conditioned on

Y FBn1
= 1.

The intersection of these two events is what we want to prove. Since the first event
happens with probability at least 1 − ε which is proved in Section 4.1, we now show a
bound on the second event.

LEMMA 4.4. Conditioned on Y FBn1
= 1, ∀δ, ξ > 0, and c being the highest stable fixed

point,

Prob[|c− Y FBFn2
| < δ] > 1−O(

1

nξ2
) = 1−O(

1

nξ
).

PROOF. Similar to Lemma 3.4 we take n1 = C log(n) where C is large enough such
that at time t ≥ n1 the step size |Yt+1 − Yt| is smaller than δ/4. Because 1 is not a fixed
point, f(x) < x where c− δ ≤ x ≤ 1, for n1 < t < n2 the predictable part g(Yt) will push
the ratio Yt into the interval (c− δ, c+ δ) and a similar argument in Lemma 3.4 shows
that Yt will stay there with high probability 1−O( 1

nξ
).

4.3. Constant separation phase
Finally, for third phase, we reveal the edges from node n2 to n, and show that the
infected ratio Y FBFBn after the second backward contagion will have a constant im-
provement, i.e., Y FBFBn > c+m∆ where ∆ > 0 is independent of n. Let IFBFBt denote
the indicator function that node t is not infected during the second forward infection
but getting infected in the second backward infection. Because each additional infec-
tion of a node, IFBFBt would contribute at least m to weighted infection ratio Y , and
it’s sufficient to show that

Prob[

n∑
k=1

IFBFBk > ∆n] > 1− η. (12)



We use second moment argument to prove it. Lemma 4.5 shows the expected incre-
ment ratio Y FBFBn − Y FBFn is greater than some constant m∆, that is sufficient to
have E[

∑n
k=1 I

FBFB
k ] > ∆n. And the second lemma 4.6 shows that the variance of∑n

k=1 I
FBFB
k is small.

Let MFBF
(c−δ,c+δ)(n2, n) be the event that ∀t where n2 < t ≤ n, Y FBFt ∈ (c− δ, c+ δ].

LEMMA 4.5. If n2 = rn, then ∃∆ > 0 s.t. E[
∑n2

k=1 I
FBFB
k |MFBF

(c−δ,c+δ)(n2, n)] ≥ ∆n.

The following lemma show that the variance of
∑n2

k=1 I
FBFB
k is small.

LEMMA 4.6. Var[
∑n2

k=1 I
FBFB
k |MFBF

(c−δ,c+δ)(n2, n)] = O(n).

Apply these two lemmas we have Prob[
∑n2

k=1 I
FBFB
k |MFBF

(c−δ,c+δ)(n2, n)]] > 1−o(1), and
Prob[

∑n2

k=1 I
FBFB
k ] > 1 − o(1), since Prob[MFBF

(c−δ,c+δ)(n2, n)]] > 1 − o(1). Combine these
lemmas we can prove Theorem 4.1:

PROOF. The first part of the proof is derived from Lemma 4.3 since Yn1
= 1 with

high probability and f(1) = 1 is a fixed point, then all the nodes after n1 will get
infected and Prob[Yn = 1] = Prob[Yn1

= 1] = 1 − o(1). In second part, the event that
Ỹn > c+m∆ holds if the following is true.

(1) The infected ration Y FBFBn2
is around highest stable point c c.f. Lemma 4.4;

(2) The increment is greater than constant c.f. (12).

By union bound, the event fail with probability less than 1− o(1).

5. SIMULATIONS
We ran simulations on model networks and real world data sets to understand the
behavior of a general threshold contagion and its dependency on threshold distribution
D, the network structure, and the selection of initial seeds.
Model networks We generate graphs using the stochastic attachment model and run
a contagion in both the directed and undirected version. We use two threshold distri-
butionsD1 andD2. InD1, the probability of taking a threshold of 1, 2, 7 is 0.22, 0.39, 0.49
respectively; in D2, the probability of taking a threshold of 1, 2, 5, 7 is 0.1, 0.4, 0.45, 0.05
respectively. Using definition of function f in Equation 2, with m = 5 and D1, f has one
fixed point equal to 0.558.With m = 6 and D2, f has two fixed points 0.875 and 0.521. In
each run of the simulation, we vary I to be a fraction β ∈ [0, 1] of a constant number of
the first 6 nodes for D1 and first 7 nodes for D2 of the network.

Directed network. We create a network G1 based on Definition 2.2, in which each
newcomer choose m edges that are preferentially attached to earlier nodes. G1 is di-
rected, each edge pointing from a high indexed node to a low indexed node. Figure 1
show the results of running a contagion over G1 using D1 and D2 with different sets of
seeds. For different runs, the ratio of infected nodes converges to one of the stable fixed
points. When f has multiple fixed points (as in the case of D2), the way that the first
few nodes are infected typically determine the infection rate of the entire network.

Undirected network. We take G1, make all edges undirected, call it G2. Then we run
contagion in alternating forward and backward steps. See Figure 2. The first forward
step behaves the same way as contagion on the directed network. The first backward
step uniformly infects more nodes everywhere. In the case ofD2, the next foward phase
infects a large number of nodes. Additional steps do not change the infection state
much.
DBLP and Web graphs We use two real world networks: the Stanford web graph (a
directed network) and the DBLP co-authorship network (an undirected network).



Fig. 1. Contagion using threshold distribution D1 in (Left) and D2 in (Right) with different initial seeds on
the directed preferential attachment graph.

Fig. 2. Contagion using threshold distribution D1 in (Left) and D2 in (Right) with different initial seeds on
undirected preferential attachment graph.

(1) Stanford web graph: Each node represents a page from Stanford University (stan-
ford.edu) and there is a directed edge from u to v if u has a hyperlink to v. The
network contains 281, 903 nodes and 2, 312, 497 edges.

(2) DBLP co-authorship network: The nodes are authors and there is an undirected
between two nodes if they have published at least one paper together. This data
set has 317, 080 nodes and 1, 049, 866 edges.

To understand contagion on real networks, we first try to fit our stochastic attach-
ment graph model. For that, we generate an arriving order from the real world graphs.
There can be multiple ways to do so. Here we iteratively remove the lowest degree
node, with ties broken arbitrarily. Then we take the reversed order and use it as the
arriving order of the nodes. If the network is directed, we iteratively remove the node of
lowest in-degree. Next, each node v has a degree dv referring to the number of edges to
the lower indexed nodes. We collect all such degrees dv, ∀v, and use it for the outgoing
degree distribution M . Then we generate a network G′ using the stochastic attach-
ment model with outgoing degree distribution M . Here, we set the number of nodes
of the network to be 300, 000, which is almost the same as the number of nodes in
both Stanford and DBLP data sets. We create a complete graph of m nodes, where m
is the expectation of the outgoing degree distribution M , which is 6 for the Stanford
data set and 3 for the DBLP data set. For the attachment rule we introduce a param-
eter α ∈ [0, 1] as the probability that an edge is attached using the preferential rule.
If α = 0 all edges are attached uniformly at random; if α = 1 all edges are attached
preferentially. In experiments, we use α = 0, 0.25, 0.5, 0.75, 1.



Fig. 3. Contagion on (Top) Stanford web graph and (Bottom) the DBLP coauthorship graph, stochastic
attachment models and configuration models.

For contagion model, we take two approaches. First, we take D, the threshold dis-
tribution to be the Poisson distribution with parameter λ. We start each of the exper-
iments from λ = 1 and increase its value until the total infection rate of the network
drops below 1%. Second, we run a k-complex contagion model, in which all nodes have
threshold k. We take seeds as the 25 lowest indexed nodes.

We run these two contagions over both real networks and their corresponding gen-
erated model networks. For comparison, we also generate a network using the config-
uration model following the same degree distribution of the real world network.

Figure 3 shows the results where the threshold distribution is a Poisson one. It can
be observed that the behavior of contagion on the generated stochastic attachment
graph (especially the one with α = .75) matches the behavior of the real world graph
fairly well, while the configuration model (though having the same degree distribution)
does so poorly. Tables I and II show the confidence intervals for the most similar model
for DBLP dataset, which is SA with α = 1, and for Stanford dataset, which is SA with
α = 0.75, under different values of λ.

Figure 4 shows the results for k-complex contagion. Our models, though with infec-
tion rate shifted away from the behavior of the real world graph, is still much better
than the behavior of configuration model (for which the infection rate is zero for any
k complex contagions, k ≥ 2). In particular, we believe this is partly due to the lack of
community structures in the configuration model.



Fig. 4. Contagion on Stanford web graph (left) and the DBLP coauthorship graph (right) under stochastic
attachment models and configuration models.

α = 1 Mean 95% CI
λ = 1 .9835 [.9832,.9837]
λ = 2 .9334 [.9338,.9329]
λ = 3 .8486 [.8478,.8498]
λ = 4 .7260 [.7220,.7283]
λ = 5 .5608 [.5564,.5662]
λ = 6 .3105 [.3004,.3488]
λ = 7 .0588 [.0274,.0855]
λ = 8 .0113 [.0061,.0294]

Table I.

α = .75 Mean 95% CI
λ = 1 .9631 [.9611,.9663]
λ = 2 .8853 [.8834,.8886]
λ = 3 .7762 [.7760,.7789]
λ = 4 .6451 [.6198,.6798]
λ = 5 .5058 [.4872,.5232]
λ = 6 .3487 [.3212,.3623]
λ = 7 .1997 [.1712,.2198]
λ = 8 .0903 [.0672,.1271]

Table II.

6. CONCLUSION
This paper initiates the study of complex contagion with general thresholds. One take-
away is that stochastic attachment graph model can be used to estimate the behavior
of contagion on real data sets better than configuration models.
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