
GROWRANGE: Anytime VCG-Based Mechanisms
David C. Parkes

Division of Engineering and Applied Sciences,
Harvard University,

33 Oxford Street, Cambridge MA 02138
parkes@eecs.harvard.edu

Grant Schoenebeck
Harvard College,

Cambridge, MA 02138
schoeneb@fas.harvard.edu

Abstract

We introduce anytime mechanisms for distributed op-
timization with self-interested agents. Anytime mecha-
nisms retain good incentive properties even when inter-
rupted before the optimal solution is computed, and pro-
vide better quality solutions when given additional time.
Anytime mechanisms can solve easy instances of a hard
problem quickly and optimally, while providing approx-
imate solutions on very hard instances. In a particular
instantiation, GROWRANGE, we successively expand
the range of outcomes considered, computing the op-
timal solution for each range. Truth-revelation remains
a dominant strategy equilibrium with a stage-based in-
terruption, and is a best-response with high probability
when the interruption is time-based.

Introduction
Designing mechanisms to solve distributed optimization
problems with self-interested agents is becoming increas-
ingly important in a wide variety of settings, from e-
commerce, to the allocation of computational resources in
open systems, to planning in multi-agent systems. This field,
called computational mechanism design (CMD), aims to de-
sign solutions that are both incentive-compatible (with truth
revelation in a game-theoretic equilibrium) and tractable.

Combinatorial auctions (CAs), with agents that demand
bundles of items, are a canonical problem in CMD. All pre-
vious work on tractable and strategyproof mechanisms (with
truth-revelation in a dominant-strategy equilibrium) for CAs
has considered restricted domains of agent preferences. For
instance, Lehmann et al. (2002) describe a fast and strat-
egyproof CA for single-minded agents that demand only
one bundle. But, there are many other examples (Mu’alem
& Nisan 2002; Archer et al. 2003; Bartal, Gonen, & Nisan
2003). These methods do not apply to the general CA prob-
lem.

In this paper, we introduce anytime mechanisms, as a
new paradigm for the design of incentive-compatible and
tractable mechanisms. Anytime mechanism will solve easy
instances of a hard family of problems quickly and opti-
mally, while returning approximate solutions and retaining
strategyproofness on very hard instances. Provable worst-
case approximation results are dropped in favor of good per-
formance on most problems coupled with the ability to ter-
minate the algorithm with an approximate solution on the
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very hardest of problems.1 We address the challenge of re-
taining useful incentive properties, such that truthful bidding
is an equilibrium whenever a mechanism is terminated.

It is worth emphasizing that a naive approach, in which
a Vickrey-Clarke-Groves (VCG) mechanism (see Nisan
& Ronen (2000)) is coupled with an anytime winner-
determination algorithm, would not be strategyproof unless
the algorithm has enough time to solve the problem opti-
mally. The strategyproofness of the VCG mechanism ordi-
narily relies on the optimality of its decision.

Our solution builds on maximal-in-range VCG mecha-
nisms (Nisan & Ronen 2000).We implement anytime mech-
anisms as staged mechanisms, with a new range of outcomes
considered in each stage and the optimal solution com-
puted for each new range. Importantly, the range adopted
in each stage must not depend on any information reported
by agents. In each stage we also compute the optimal solu-
tion to the problem without each agent. When interrupted,
the anytime mechanism implements the best solution found
so far, and determines VCG-based payments on the basis
of the best solutions found so far without each agent. The
mechanism will continue to compute a better solution when
provided with more time.

To understand the incentive properties we consider two
different models of interruption. First, we consider stage-
based interruptions, in which the mechanism is interrupted
after some number of stages. Truth-revelation remains a
dominant strategy equilibrium, because the final solution is
optimal over the union of the ranges explored, with individ-
ual ranges chosen without regard to agent bids. Throughout
the paper it is important that the interruption comes from the
center, or some third-party, and not from one of the agents.

A more realistic model is one in which the interruption
process is time-based, for instance an answer might be re-
quired after 10 minutes. A new concern here is that an agent
can indirectly affect the sequence of ranges explored by
changing the difficulty of the problem through its bids, and
thus influence the progress made by the algorithm before in-
terruption. Our solution is to use consensus functions (Gold-
berg & Hartline 2003) to compute a conservative and agent-
independent estimate of the number of stages completed
by the time of an interruption, with results from any addi-
tional stages discarded. Together with additional assump-

1Indeed, Nisan & Ronen (2000) and Lavi et al. (2003) suggest
that no worst-case polynomial time combinatorial auction can be
strategyproof and provide good worst-case approximation proper-
ties, without assuming a restricted preference domain.



tions about the maximal influence that an agent can have
on the run time, this makes truthful bidding a best-response
with high probability, whatever the bids of other agents.

We illustrate our methods in the context of CAs. We de-
fine GROWRANGE, which is a particular partition-based in-
stantiation. The empirical results illustrate encouraging per-
formance on hard problems with high run time variance.

Preliminaries
Mechanism design (MD) considers a system of rational self-
interested agents and the problem of choosing an outcome �
from a finite set � of possibilities. Let � denote the number
of agents. Each agent ����� has a type, 	�
����
 , that defines
its value ��
�������	�
�� for each possible choice � . This informa-
tion is privately known to each agent. Let 	�����	����! " ! #�$	&%'�
denote a type vector and 	)( 
 to denote all types except
that of agent � . Agents have quasilinear utility, *+
$���,��-.�/�
��
����,�$	&
0�213-4
 , in value and payments.

Agents report types (perhaps untruthfully) and the mech-
anism computes the outcome and payments. The challenge
is to implement an outcome with good properties despite the
ability to misreport types. For instance, efficient MD seeks
to implement a choice �65078�9	6�:�;� that maximizes the total
value across all agents.

Given reports <	 , mechanism = � �����9-.� defines a
choice rule ��� <	6�>�?� and a payment rule - 
 � <	)�A@CB ,
that determines the payment made by each agent to the
center. Let DE�����F�HGJI�KMLON 
 ��
$���,� <	�
�� and DP�9� ( 
��F�
GJI�K L NRQ&ST 
 � Q ����� <	 Q � .
Definition 1 The Vickrey-Clarke-Groves (VCG) mechanism
defines choice rule � 
 � <	��U�VI�W$XOGJI�K LZY�[\N 
 � 
 ���,� <	 
 � , and
payment rule -.
���<	��O�]��
����+�&<	��#�M<	�
0�81_^`DP�9���81aDE��� ( 
��0b .
The VCG mechanism has the following properties:

Strategyproof: Truth-revelation is a dominant-
strategy equilibrium. Formally, ��
�����5078�9	�
��$	 ( 
��#��	�
��a1
-4
��9	�
��$	 ( 
���@���
�����5078��<	&
$��	 ( 
��#��	�
��c1d-4
��&<	�
��$	 ( 
�� for all � ,
all 	 ( 
 , all 	�
 , and all <	&
:e�]	�
 .

Efficient: The choice implemented in the VCG mechanism
maximizes the total value across agents, in equilibrium.

Strategyproofness is a useful property for mechanisms
because it simplifies the strategic problem facing bidding
agents. An agent does not need to model the values or strate-
gies of other agents to compute its equilibrium strategy.

Often times the optimization problem ��� <	�� is intractable,
for instance in CAs (Rothkopf, Pekeč, & Harstad 1998). It
is interesting to consider a VCG-based mechanism, in which
the optimal choice rule, �.f , is replaced with an approximate
choice rule. Everything else is left unchanged, with pay-
ments computed by applying the approximate choice rule
to solve the optimization problem without each agent.

In particular, Nisan & Ronen (2000) define maximal-in-
range VCG mechanisms. Consider some range g�ihj� , and
let DE���ak g���;�iG/I�K LZY:l[ N 
 ��
����,�M<	�
�� and DE��� ( 
mk g�n�o�
GJI�K LZYpl[ NjQ&ST 
 � Q ����� <	 Q � .

Definition 2 A maximal-in-range VCG mechanism imple-
ments choice rule g����<	6�q� I�W$X�GJI�K L&Y:l[ N 
 ��
����,�M<	&
0�r�
and payment rule -,
$� <	6�_�s��
��$g��� <	6�r� <	&
0��1 ^ DP�9�aktg����1
DJ�9� ( 
$kcg��� b , for some range g�ihR� .

Proposition 1 (Nisan & Ronen 2000) A VCG-based mech-
anism is strategyproof if and only if it is maximal-in-range.

That maximal-in-range is sufficient for strategyproof
follows immediately from the strategyproofness of VCG
mechanisms. Maximal-in-range is also necessary for strate-
gyproofness because otherwise there is always a set of types
for which one agent can select the maximal choice in the
range by misreporting its type, and thus improve its utility.

Crucially, the strategyproofness of maximal-in-range ap-
proximations hinges on the agents retaining an expressive
language for outcomes in the range, and on the range being
selected independently of agent bids.

Combinatorial Auctions
Combinatorial auctions (CAs) have received particular at-
tention in CMD. In a CA, there is a set of u items to allo-
cate. Agent � with type 	�
 has value ��
���v���	�
��:@RB for a bun-
dle vAhAu of items. For simplicity, it is convenient to drop
the explicit dependence on type and write �6
���vO� . We assume
free-disposal, with ��
���wx�/@V��
���vO� for all wzy{v and nor-
malize with � 
 ��|����}B . The efficient allocation maximizes
N 
 � 
 ��v 
 � subject to v 
�~ v Q ��| and v 
 h]u .

Noting that the strategyproofness of the maximal-in-range
approximation requires no restrictions on agent valuations,
one might wonder whether a maximal-in-range approxima-
tion can provide a CA that is tractable and produce reason-
able solutions. Unfortunately, the answer is negative.

Theorem 1 (Nisan & Ronen 2000) No strategyproof VCG-
based CA can be both tractable and reasonable.

In particular, an allocation is said to be reasonable if
whenever a single agent values an item that agent receives
the item in the allocation. Without reasonableness there can
be no useful worst-case guarantee on efficiency. Thus, this
negative result makes the case for an anytime approach.
Without this, we must either: (a) impose an a priori restric-
tion on the range that will sometimes preclude reasonable
behavior even when an instance was actually easy; or (b)
seek optimality and accept that sometimes a solution will not
be returned quickly; or (c) accept a loss in strategyproofness
and an unraveling of incentives.

We note, parenthetically, that although there are many
known tractable special-cases of the CAP that arise due to
restrictions on the structure of bundles (e.g. circular-ones,
consecutive-ones, two-ones) (Rothkopf, Pekeč, & Harstad
1998; de Vries & Vohra 2003), and that thus suggest
maximal-in-range approximations, all of them assume an
additive-or language for bids. This language is not expres-
sive for general valuations, even on restricted ranges (unless
the range only allows each agent to receive a single bun-
dle). Moreover, introducing an expressive language, with
exclusive-or bids (Nisan 2000), requires introducing addi-
tional side constraints that break the very structure that is
required for tractability.



Anytime VCG-Based Mechanisms
We use maximal-in-range VCG approximations to define
anytime VCG mechanisms. The mechanisms are defined for
a sequence of ranges � � �������" ! " #� , that satisfy the following
properties:

1. The sequence of ranges is independent of reported types.

2. Optimization DE���ak$�d�Z� and DE���J( 
 k$�d�Z� on the range
��� in early stages � tends to be easier than solving the
complete problem DJ���ak$�n� .

3. The union of ranges, � ��� ��� � �A� , i.e. the search even-
tually computes the optimal solution across all choices.
It is critical that the sequence of ranges not depend on

the bids from agents to maintain strategyproofness. As an
example, this rules out allowing agents to submit 10 bids of
their choice, then 20 bids, then 30 bids,  ! " with the range
defined in terms of the bundles in agent bids.2

In our staged, maximal-in-range, approach we consider a
sequence of ranges, � � �������" ! " #� . Let �a�,�E� � �����,� ��� � ,
and �a� � � � � � � � � � � . Let g� � denote the solution to

GJI�K LZY�[��6� N 
 � 
 ����� <	 
 � , and g���( 
 denote the solution to
GJI�K LZY�[ �6� NRQ&ST 
 � Q ���,� <	 Q � .
Definition 3 (Anytime VCG Mechanism) Given a se-
quence of ranges � � �$�d���! " ! and reports <	 :

1. In stage � , solve GJI�K4LZY�[ �2N 
 ��
������ <	�
�� and
G/I�K�LZY�[ � N Q&ST 
 � Q ���,�M<	 Q � for all �z��� . Update g���
and g� �( 
 , to maintain the best solutions seen so far.

2. If an interruption is received during the stage ��� then im-
plement outcome g��� � ( � , and payments

-4
2����
$� g� � � ( � �M<	�
��81 ^ DE���ak$� �.� � �81aDE��� ( 
�k$� �.� � � b  
Note that the payments can be quickly computed by evalu-

ating the best solutions determined at the end of stage ���r13� ;
it is not necessary to solve any additional optimization prob-
lems. Also, note that this is not simply a sequence of VCG-
based mechanisms, because the VCG payments are com-
puted in terms of the best solutions across all stages, regard-
less of the stage in which they occurred. Not all best solu-
tions (for the main problem and the problem without each
agent) need occur in the same stage.

Turning to incentives, consider a stage-based interruption,
for instance an answer might be required after 10 stages.
More generally, the interruption can follow some p.d.f. ������� ,
that can be known to the agents.
Theorem 2 The anytime VCG mechanism is strategyproof
for a stage-based interruption ���9�)� , and will implement the
efficient allocation if allowed to run for enough stages.

Proof: The anytime VCG mechanism is strategyproof for
any fixed number of stages because the sequence of ranges
are independent of agent bids. Thus, the union over some
number of ranges defined by an agent-independent distribu-
tion is itself agent independent. Efficiency holds once the
final stage is implemented because this range contains all
feasible solutions.

2This scheme was proposed in Banks et al. (1989).

Avoiding Redundant Computation
A number of simple optimizations are possible to avoid the
unnecessary duplication of computation across stages.

We describe these in the context of an implementation in
which the optimization problems in each stage are formu-
lated as mixed-integer programs, and solved via branch-and-
cut LP-based search. But the ideas are general, and also hold
for other systematic search algorithms.

Lower-bound Pruning. When solving DE�9�\k$� � � and
DJ��� ( 
�k����&� in stage � , use the value of the best current
solutions, i.e. DP�9�ak��\�.�Z� and DE�9� ( 
�k$�\�.�&� to prune the
search. For instance, when all solutions under a search
node are dominated in value by the current best solution
then prune the subtree at that node.

Second-best Solutions. When solving DP�9� ( 
�k$���&� for
stage � , we know DE��� ( 
$k$� � �}�qDP�9�ak�� � � . Solve
for DP�9�ak����&� first, and then if a feasible solution to
DJ���J( 
 k����&� also has value DE���ak$�d�Z� then immediately
stop without proving optimality. Combining with lower-
bound pruning, if DP�9� ( 
�k��a�,�"�t@FDE���ak$�d�"� then there
is no need to solve DE�9�P( 
 k$���&� .

Disjunctive Search. Constraints can be added to the for-
mulation of search in a new stage to avoid duplication
of effort with earlier searches. For instance, the problem
DJ���ak$�d�Z� can be formulated as GJI�K4LZY�[ � N 
 ��
$���,� <	�
0�
s.t. �\��;�a�,� . This is related to the idea of “local branch-
ing” in Fischetti & Lodi (2002). In the case of CAs, this
means adding a constraint to ensure that at least one agent
receives a new bundle.

An Anytime VCG-Based Mechanism for CAs
GROWRANGE is a concrete instantiation of an anytime VCG
mechanism for CAs. In particular, it adopts a partition-based
sequence of ranges, and considers only monotonically-
increasing sequences of ranges.

Partition-Based CAs
Let �����Z�'�&�" ! ! "�$��L�� denote a partition of items u into
non-empty parts. Following Holzman et al. (2001), let �:�\h���

denote the set of bundles generated by � , i.e. containing
all bundles of the form ��� Y�� � � , where �ih �����" ! ! !���.� .
Clearly, the “grand” bundle u is always in � � , and we also
require that �c� includes the empty bundle, | . Given all bun-
dles in � � we define the range to include all allocations
v¡�¢��v£���! " ! #��v�%'� in which v+
o�{� � for every agent � .
Loosely, we also find it convenient to simply refer to the
bundles, ��� , as the range.

This leads to a concrete instantiation of a maximal-in-
range CA. Consider an exclusive-or (XOR) bidding lan-
guage (Nisan 2000), with bid ��¤ 
 ��¥ 
 � from agent � defin-
ing value <� 
 ��vO� on all v �¦¥ 
 and value <� 
 ��vO�§�
G/I�K�¨ � Y�©�ª¬« ¨ �® ¨¯¤r
$��v��°� on all bundles v¢hCu , v���§¥�
 ,
by free-disposal. Projecting these bids onto the restricted
range, ��� , we construct bids ¤#�
 ��v±�n� <� 
 ��vO� on all bun-
dles v²��¥³�
 �´� ¨MY�©�ª�µ ��vO� with µ ��vO�/����� defined as
the bundle in � � that minimally includes v (Holzman et
al. 2001). There is a unique such bundle because the field,



� � , is closed under intersection. The premise behind this
approach is that fewer bids tend to make winner determi-
nation easier. Note that the input size of the projected bids
from agent � is at most G/¶¸·+��¹ ¥ 
 ¹`�Z¹ ���t¹º� .

Given these projected bids, a standard “branch-on-bid”
winner-determination algorithm such as ILOG’s CPLEX
mixed-integer programming package, or special-purpose
solvers such as CABOB (Sandholm et al. 2001) can be used
to compute the optimal solution and provide a maximal-in-
range VCG mechanism.

As an example, consider an agent with valuation
����».��¼�½�B6�#�"��¤���¼)�ZB�B���� , goods u � �&»4��¤&�$���$¾�� , and par-
titions � � � �&»)¤#���$¾�� , �¯� � �Z».��¤r���$¾�� , �¯¿ �
�Z».��¤&�$����¾M� , that define fields � �£À � �&|M�$»�¤r����¾���»)¤#�#¾M� ,
� ��Á �Â�&|M�$».�$»)¾4�$»�¤r����¤r����¤r�#¾4�$¾�� and � ��Ã � �6� . The pro-
jected bids are �)�9»�¤r���r¼)�"B6B6�r� , ����».��¼�½�B6�#�"��¤#����¼��"B�B���� , and
����».��¼�½�B6�#�"��¤���¼)�ZB�B���� , for partitions � � ���¯� , and �x¿ respec-
tively.

The additional structure in a partition-based range can
also be made available to a solver by defining a new set of
“dummy” items, each associated with one bundle in the par-
tition. In fact, the special structure of a partition-based range
provides an additional equilibrium property, defined with re-
spect to the bids submitted on the range � � :

Theorem 3 (Holzman et al. 2001) No agent can benefit by
unilaterally submitting a bid outside of a partition-based
range ��� , given that bids from other agents are projected
onto � � .

Algorithm: GROWRANGE Ä¬Å4Æ�Ç!ÈtÉ
A sequence of partitions, � � �$�x���" ! ! , defines the sequence
of ranges. Parameter ��Ê defines the size of the initial par-
tition, and parameter Ë defines the number of refinements
made in between stages:
Ì To construct � Ê , choose � Ê items uniformly at random, to

seed a separate component of � Ê . Place each remaining
item uniformly at random into one of the components.

Ì To construct �x� from �x� ( � , choose a component vÍ�
�¯� ( � with ¹ vp¹'Î � and split the component (choosing
the split uniformly at random) into two new components.
Repeat Ë times (or until all components of the partition
are singletons).

Note that because we define refinements of the partition
by this subdivision process each successive range will be
defined on more and more bundles, i.e. �t� � yF� � ��Ï À . This
simplifies the anytime VCG mechanism, because the best
solutions to DP�9�ak�� � �&� and DE��� ( 
�k�� � �"� , for any � , will
always be those computed in the most recent stage. Also,
we see that the solutions used to determine payments are
determined in the same stage as the best overall solution.

Empirical Analysis
In preliminary studies, we have investigated the anytime per-
formance of GROWRANGE for CAs. For winner determi-
nation, we use the IBM OSL mixed-integer programming
(MIP) solver both to solve optimization problems within
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Figure 1: Anytime performance of GROWRANGE.

each stage of GROWRANGE, as well as to compute the out-
come for the one-shot (optimal) VCG mechanism.

In testing GROWRANGE, we adapt the bid distributions
defined in Sandholm (1999), but using Sandholm’s mod-
els to define valuations for agents. It is important to note
that we generate values with these distributions, and not
bid prices. In particular, we adopt an exclusive-or (XOR)
logic to define a valuation function in terms of the values
on a sparse number of bundles.3 We adapt the Weighted-
random, Random, Uniform and Decay distributions. Prob-
lem sizes are (agents/bundles-per-agent/goods): 100/4/200,
80/4/160, 40/4/80, and 80/4/160 for each distribution respec-
tively, with Sandholm’s Decay parameter set to 0.55 and
with bundles of size 5 in Uniform. We adopt parameters
����Ê��$Ë8�P� ��½M�!�"B�� for all distributions except Uniform, for
which we adopt parameters ���6Ê6��Ë2�O�_� � ��½6� .

Figure 1 illustrates the performance of GROWRANGE. We
plot the average and maximum runtime of the one-shot VCG
mechanism, along with the max, min, and average anytime
profiles of GROWRANGE. All results are averaged over 10
instances, and experiments were perfomed on a 4 GHz P4,
with 512 MB RAM. Note that we measure the total run
time for GROWRANGE, including the overhead for project-
ing bids and constructing partitions.

Given that we use random partitions in GROWRANGE and
make no effort to tune the sequence of partitions to the prob-

3It is a common misconception that these distributions provide
easy winner-determination problems. As initially defined in Sand-
holm (1999) the distributions were used to define bids connected
with an additive-or bidding language. It is in this form that An-
dersson et al. (2000), and others, have shown that the Weighted
Random, Random, and to some extent the Decay distributions are
easy. We are not aware of any studies of the complexity of winner
determination when these distributions are used to generate values,
and structured as an XOR’ed set.



lem domain we find these initial results quite encouraging. If
a system was to use the one-shot VCG mechanism it would
need to be prepared to wait for the maximal possible run
time, because if there was ever a chance that it would be
terminated before completion then strategyproofness would
be lost and the performance would unravel. Thus, the most
interesting test for GROWRANGE is to look at its anytime
performance after some fraction of the maximal VCG run
time.

The anytime approach is most promising on problems
for which there is a large variance in solution difficulty
across instances. This is illustrated on Uniform, for which
the run time of the VCG mechanism has a large variance
(the mean run time is 13.7s but the maximal run time was
34.3s). GROWRANGE averages better than 90% allocative-
efficiency in 50% of the worst-case VCG run time. We also
see good performance on Weighted-random, although this
proved to be an easy problem for both methods.

The Decay and Random distributions proved not to be
well suited to the anytime approach because we found lit-
tle variance in the run time of the VCG mechanism, at least
over 10 trials. GROWRANGE averages only around 50% effi-
ciency in 50% of the worst-case VCG run time. Future anal-
ysis should take additional samples to make sure that there
is indeed little variance of VCG run time on these problems.

Leyton-Brown et al. (2002) have studied the variance in
run time for CAs, given distributions from CATS (?). Their
analysis suggests a high variance in many problems. We
view this as further evidence that anytime mechanisms are
necessary in practice.4

Time-Based Interruptions
We now turn to a time-based model of interruption, in which
the center interrupts the mechanism according to some ran-
dom process wÑÐÂ����Ò�� that defines the time w at which a
solution is required. Time-based interruptions are appeal-
ing because they allow the center to respond when chal-
lenged to provide a solution, and also because they can facil-
itate the integration of cost-of-delay based models of meta-
deliberation (Horvitz 1987; Dean & Boddy 1988).

Even when the sequence of ranges � � �������" ! " remains
independent of bids from agents, an agent can try to change
the progress made across this sequence by a particular time
by submitting bids that change the difficulty of the opti-
mization problems in each stage. Consider, for instance, an
agent that knows that it is a winner in early stages but not
in later stages. If an interrupt will come quite late, this agent
could try to state a type that slows down computation in early
stages. Of course, this is not without drawbacks because the
agent must also be careful not to adversely change the out-
come in any stages that are searched (it’s dominant strat-
egy, contingent on a fixed or random range, remains truth-
revelation).

A simple fix would use an optimization algorithm with
a run time that is the same for all bids, for any given range.

4Subject to the concern, discussed in the next section, that this
variance not be accompanied by significant opportunities for any
single agent to change the run time through its bid.

But, this approach is not appealing because we want to solve
easy instances quickly rather than design for the worst-case.
This is the whole motivation for an anytime approach!

Instead, we define a randomized mechanism and retain
strategyproofness with some error probability (Archer et al.
2003). We say a mechanism = is strategyproof with error
probability - if for every 	�( 
 and every 	 
 , the probability
that a truthful bid 	�
 is not the best-response for agent � is no
greater than - .

Let �4�9	M��Ò�� denote the number of stages completed by time
Ò . We use consensus functions (Goldberg & Hartline 2003)
to compute a conservative estimate Ó8��	M�$Ò����>�.��	M�$Ò�� of the
number of stages, that is agent independent and cannot be
manipulated by any single agent with probability - . The
mechanism then “rolls-back” its state to the end of stage
Ó8��	M�$Ò�� , discarding any results from additional computation.

For now, we provide a high-level description of the mech-
anism. Let Ô�Õ®ÖJ×6�9	M�$�)� denote the total compute time to solve
DJ�9�ak�� � �Z� and Ô�Õ®ÖJ×���	 ( 
$�$�)� denote the total compute time
to solve DP�9�E( 
 k$� � �Z� , given reports 	 . We define and con-
struct our agent-independent estimator below.

Definition 4 (Consensus-Based Anytime VCG Mech.)
Given a sequence of ranges � � �$�d���! " ! , reports <	 , and a
conservative and agent-independent estimator Ó8��	M�$Ò�� :

1. In stage � , solve G/I�K L&Y�[p�2N 
 � 
 ���,� <	 
 � and
GJI�KMLZY�[ � N Q&ST 
 � Q ������<	 Q � for all �z�Ø� . Update g���
and g���( 
 , to maintain the best solutions seen so far.

Update Ô�Õ®ÖJ×���<	��$�)� and Ô�Õ®Ö/×���<	 ( 
$�$�)� .
2. If an interruption is received at time Ò$� , then compute
�����ÙÓ8��<	M��Òm�°� , and implement implement outcome g����Ú°Û ,
and payments

-4
2����
$� g� � � �M<	�
��81²^`DE���ak$� � � � �81aDE��� ( 
�k$� � � � �0b� 
Discard the results from additional computation com-
pleted after stage �)� .

Theorem 4 Consensus-Based Anytime VCG Mechanism,
with conservative estimator Ó8�9	M��Ò�� that is agent indepen-
dent with probability - , and time-based interruption ����Ò�� , is
strategyproof with probability - .

Proof: Whatever the reports 	)( 
 of other agents e�Ü� ,
and whatever the interruption time Ò � , with probability -
the mechanism is rolled-back to the same stage �����
Ó8� <	�
m�$	 ( 
m�$Òm�°� for all reports <	&
 . Agent � ’s best-strategy is
to bid truthfully when this occurs, because the mechanism
will implement a maximal-in-range VCG outcome on range
� � � � � �d� .

Here, it is important that the second-best solutions
DJ�9� ( 
$k$���&� are explicitly solved in each stage, in order
to construct a suitable agent-independent estimator Ó8�9	M��Ò�� .5
Also, it is important that the estimate is close to the true

5In comparison, these calculations can be skipped in the stage-
based interruption model when the solution to ÝUÞ�ßUà�á0â�ãJä!å can be
readily inferred from ÝUÞ�ßæâmã ä å . For instance, in a CA this occurs
when agent ç receives no items in the efficient solution.



number of stages completed because we must discard any
computation performed after the estimated stage Ó8�9	M��Ò$�°�
given interruption at time Ò�� .
An Agent-Independent Stage Estimator

We need an estimator Ó8�9	M��Ò�� for the number of completed
stages that is agent independent with high probability.

Definition 5 Function Ó8�9	M��Ò��a�Vè is a conservative and
agent-independent estimator with probability - , if:

P1. Ó8��	M�$Ò��c�R�.��	���Ò�� , for all 	 and all Ò .
P2. Ó8� <	�
���	 ( 
���Ò��t�éÓ8��	�
m�$	 ( 
��$Ò�� , for any 	 ( 
$��	�
 , and Ò , and

all <	�
te�F	�
 , with probability - over coin flips independent
of 	 and Ò .
A trivial estimator Ó8�9	M��Ò�� would return B for small times

Ò and then 1 for larger times, for all 	 . This would be conser-
vative and agent independent, but not informative. We will
seek an estimator that returns a number of stages Ó8��	M�$Ò��
“close” to the actual number of completed stages, �.��	M�$Ò�� .
Parenthetically, we note that no estimator can be perfectly
agent independent and informative:

Lemma 1 If Ó is agent independent, then Ó depends only on
Ò .
Proof: Suppose not, then there exist 	M�$Ò such that Ó8�9	M��Ò��xe�
Ó8��	 � �$Ò�� , so we can change 	 to 	 � an agent at a time to get
the chain 	ê��	 Ê �! ! " #��	6ëJ��	�� , where 	 L has the first � types
from 	�� and the rest from 	 . Then by the agent independence
of Ó : Ó8��	 L ��Ò��O�ìÓ8��	 Lrí2� �$Ò�� and so Ó8��	M�$Ò��±�ìÓ8��	6�9�$Ò�� , a con-
tradiction.

We require two assumptions about the effect that a single
agent’s bid can have on the run time.

Assumption 1 ( î -Closeness) No one problem is more than
î3Îï� times slower than any other problem across the same
sequence of ranges:

GJI�K�ðº��Ô�Õ®ÖJ×���	�( 
 �$�)�cñ��O�J�t���!Ô�Õ®Ö/×���	��$�)�0ò
G/¶¸·£ð`�6Ô�Õ®Ö/×���	 ( 
������cñ��±�/�:�6�!Ô�Õ®ÖJ×6�9	M�$�)�0ò ��î��ôó,�

for any sequence of ranges, � � ��� � �! ! " , and for all types 	 .
Assumption 2 ( õ -bounded single-agent slow-down) No
single agent can slow down the computation to any problem
across any sequence of stages by more that a factor õ�Îö�
by stating a false report. For any agent � ,

Ô�Õ®ÖJ×6� <	 
 �$	6( 
 Q �����
Ô�Õ®Ö/×)�9	 ( Q �$�)� �÷õ2�øóx<	�
ce�]	�
��mó.	 ( Q �mó.	�
¬�¬ó��
Ô�Õ®ÖJ×�� <	 
 �$	�( 
 �����
Ô�Õ®ÖJ×���	M����� �÷õ2�øó <	 
 e�]	 
 �mó.	�( 
 �¬ó.	 
 �¬ó,�

for any sequence of ranges, � � �$�����! ! " .
Ultimately, both assumptions can be empirically validated

for a domain in question. The tighter that î - and õ - are in
practice, the better the stage estimate will approximate the

actual number of stages completed when the mechanism is
interrupted.6

Following Goldberg & Hartline (2003), who use ù�ú « û in
a very different context, we now define a random function
ù ú « û"��Ò�� that is a “ ü -consensus estimator” at time Ò with prob-
ability - , for some üEÎì� .
Definition 6 (consensus-estimator ù6ú « û ) Fix some �RÎý� ,
then define:

ù ú « û!�9Ò��±�]G/¶¸·Q Y�þ �
ú í Q such that Òc�R� ú í Q (1)

with * chosen uniformly at random from ð BM�"�#ò .
Parameter � in ù ú « û can be used to make a trade-off in our

mechanism between the probability, - , that truthful bidding
is an equilibrium and the amount of roll-back that is required
on interruption. We discuss this further at the end of this
section.

Definition 7 We say ùEñ6ÿ��4Ê��§ÿ is a ü -consensus estima-
tor function at time Ò if:Ì ù���Ò��c@jÒÌ ù���Ò��O�]ù,�9Òm�¸�+ó.Òm� such that Ò$�&üE�jÒm�£�÷Ò .
for some üJÎï� .

A function ù with these properties is named a “consen-
sus estimator” because given a set of estimates Ò � �$Ò � �! " ! ,
then a consensus estimator ù at GJI�K4�ZÒ��&�$Ò � �" ! ! � would re-
turn ù���Ò$�!�x�_ù���Ò � �'�_ù�f for all estimates whenever the in-
dividual estimates Ò����$Ò � �! " ! are clustered within multiplica-
tive factor üEÎï� of each other.

The family, ù ú « û , is defined as a family of step functions
that are flat on large regions. This ensures that the second
condition for a consensus-estimator is often satisfied. The
relative size of these flat regions (defined by � ) makes a
tradeoff between the probability of consensus and the ac-
curacy of the estimate.7 The selection of a random * ensures
that the function ù6ú « û is equally likely to be a consensus es-
timator function at any Ò :
Lemma 2 Randomly chosen ù ú « û is a ü -consensus estimator
at Ò with probability -æ�A�:1�����X û ��ü�� , for any üEÎï� .
Proof: To see this we fix an Ò and integrate over the possible
values for * that give us a ü -consensus estimation function.
Let �O�9*,� denote the p.d.f. for * , Uniform on ð BM�"�#ò . Without
loss of generality, assume that 	
 �F� Q for some �E�� . Then

� Q í ú �>ð 	
 � û 	
 � . Note that � Q í ú �>ð 	
 �$Ò�� iff this is not a ü -
consensus estimation function.� û������ T 	

û ����� T��� �O�9*,��¾�* � � ú T���� ���� 	"! ( Q
ú T��#� �$�  �� ! ( Q �O��*��m¾6*

�>�%�#�6X û Ò 1&�)�81R�%�#�6X û Òü 1&�)�O�'����X û ü³�>�:1æ-  
6Although Leyton-Brown et al. (2002) suggest that the empir-

ical hardness of winner-determination in CAs may vary by orders
of magnitude for different instances from a distribution, we are not
aware of any research that has considered the possible effect that
changing the bid from a single agent can have on run time.

7Goldberg & Hartline (2003) show there can be no function (
that works as a consensus estimator for all values ) with certainty.
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Figure 2: Analysis of Agent-Independent Stage Estimator.

The conservative and agent-independent stage estimator
Ó8��	���Ò�� is defined in terms of Ô�Õ®ÖJ×)��<	M�$�)� , Ô�Õ®ÖJ×)��<	 ( 
��$�)� , and
consensus-estimator ù ú « û :
Definition 8 (agent-independent stage estimator) Fix
��Îì� . Given interrupt Ò � , and reports <	 :

1. Select * uniformly at random from ð BM�"�#ò .
2. Compute Ó8� <	M�$Òm�¸� as:

Ó8� <	M�$Ò � ���]GJI�K� �.Ê �a  bZ  �9�dcF�Z�e#ù�ú « û ��Ô�Õ®ÖJ×)� <	�( 
 �$�)���c�RÒ � �øó,�
�9�dcF�Z�e#ù ú « ûZ��Ô�Õ®ÖJ×)��<	M�����$�c�jÒ �

where � is the number of agents.

Consider Figure 2. Let �)� �²Ó8��	M�$Òm�¸� , given reports 	 and
interrupt Ò � , and define Ò � �9	6���}GJI�K ^ �6Ô�Õ®ÖJ×6�9	�( 
 �$�)�Jñ2����t���!Ô�Õ®Ö/×���	��$�)� b , and special points f � � �9	6� and g � � í2���9	6� , as
follows: f � � �9	6�±��õhe#Ò � � �9	6�g ��� í ���9	6�±�FÒ ��� í ���9	6�
Lemma 3 Estimator Ó8��	M�$Òm�®� is agent independent when
ù ú « û provides a õ -consensus at f � � and a î -consensus atg � � í2� .
Proof: Consider Figure 2. Consider agent � , and suppose
the reports from other agents are 	�( 
 . Let � � � Ó8�9	M��Ò � � .
From the definition of Ó8�9	M��Ò�� , we know that:

ù�ú « û ��Ò ��� ��	6�$�t�
Ò �

�dcF�
and ù6ú « û �9Ò ��� í � ��	6�$�tÎ

Òm�
�dcF�

The report, <	�
¯e�é	&
 , from agent � can only change the stage
returned by Ó if: a) one of �6Ô�Õ®Ö/×�� <	&
$��	 ( 
 Q ���6�°�añi�öe�ý��� ,
or Ô�Õ®ÖJ×�� <	 
 ��	�( 
 �$��� � increases so that ù6ú « û �9Ò � � � <	 
 ��	�( 
 ���FÎÒm�®���9�jc>�Z� ; or b) all of ��Ô�Õ®ÖJ×�� <	�
$��	 ( 
 Q �$���Fc_�Z�Pñk�ìe�´��� ,
Ô�Õ®Ö/×���	 ( 
����6�lc}�Z� , and Ô�Õ®Ö/×�� <	�
��$	 ( 
m���6�lc}�Z� decrease so
that ù,�9Ò � � í ���&<	�
��$	 ( 
0��� �´Òm�®���9�jc_�&� . But, a) is not possi-
ble because we have a õ -consensus at f � � �9	6� and therefore

ù�ú « û �"f � � ��	����æ�zù�ú « û �9Ò � � ��	����æ�zù�ú « û �9Ò�� for all f � � �9	6�$�&õ_�Òp�mf � � ��	6� and the most agent � can slow down any time in
group n (see Figure 2) is by a factor of õ because of the õ -
bounded single-agent slow-down assumption. Also, b) is not
possible because there is one point, Ô�Õ®Ö/×��9	)( 
 ���6�ocï�&� , that
agent � cannot move, and because a î -consensus at g ��� í ����	6�
implies that all points in group p (see Figure 2) map to the
same point ù6ú « û ��Ô�Õ®ÖJ×)��	��$���Nc]�&��� to the right of Òm���M�9�qc]�Z� ,
and to (at least) ù ú « ûZ�mÔ�Õ®Ö/×��9	 ( 
���� � cì�Z�$� must remain to the
right of Òm�®���9�rcF�Z� for any report <	�
 .
Proposition 2 Estimator Ó8�9	M��Ò��°� is a conservative estima-
tor, and agent independent with probability -a� �x1s����X û ü
for ü��ìî�erõ , for any time Ò�� .
Proof: Let �4�9	M��Ò��¸� denote the number of stages completed
by time Ò � . We know that � � � Ó8��	M�$Ò � �n���4�9	M��Ò � � , given
interrupt Ò�� , because

Ò � @ì�9�tcæ�Z�0ù ú « û!��GJI�K ^ �6Ô�Õ®ÖJ×6�9	 ( 
m��� � �)ñ��±���t�6�¸Ô�Õ®Ö/×)�9	M�$� � � b �
@ì�9�dcF�Z��G/I�K ^ �6Ô�Õ®ÖJ×6�9	�( 
 �$� � �tñ������:�6�!Ô�Õ®ÖJ×6�9	M�$� � � b
@vu 
 Ô�Õ®ÖJ×���	 ( 
$�$� � �wc�Ô�Õ®Ö/×)�9	M�$� � �r�

which is the actual run time required to complete ��� stages.
For agent independence, the probability that we do not

have a õ -consensus at f � � �9	6� is ����X û õ by Lemma 2, similarly
the probability that we do not have a î -consensus at g ��� í � ��	6�
is ����X û î . The probability of not having a õ -consensus or not
having a î -consensus is at most ����X û õ&cx�#�6X û îR�y����X û ü ,
where ü is defined as õ�e�î . Thus, the probability of agent
independence is at least �:1z����X û ü .

This leads to our main result.

Theorem 5 The Consensus-Based Anytime VCG Mecha-
nism is strategyproof with probability �p1{�#�6X û ü for a time-
based interruption ���9Ò�� , and will implement the efficient al-
location if allowed to run for enough stages.

Cost of Consensus
What is the role of parameter � ? Well, for larger values of
� , probability - gets closer to 1 but with an estimate that
tends to be further away from the true number of stages
completed. Considering the error introduced by consensus-
estimator function ù ú « û , we have:



Lemma 4 The expectation of ù ú « û"��Ò����&Ò given that ù ú « û is a
ü -consensus estimation function at Ò is

û ( 
��� | û ( � | 
 ! 
 .

Proof: Fix Ò , and assume that 	
 ��� Q for some �E�� . This

is a ü -consensus estimation function iff � Q í ú �að Òr� û 	
 � . So� û������ T  ��
û ����� T 	 � ú í QÒ �O�9*,��¾�*M� � Q

Ò#�m�:1��#�6X û ü)� � ú T���� �$�Q  �� ! ( Qú Tl��� ���  	"! ( Q � ú ¾�*æ�
� Q

Ò#���:1z����X û ü��h} � � �$�  �  �� ! ( Q 1 � � ���  � 	"! ( Q�¸·p� ~ � �t1dü
�"�¸·p��1��¸·:ü)�mü

Putting this together, the overhead introduced through
the consensus-estimate methods gives a run time for �����
Ó8��	���Òm�°� usable stages that scales as a multiple:

î�e �t1dõ
�%� ·p�t1�� ·tõ+�0õ e#wê�9� � �$	6�

of the run time, wê�9�)�®��	6� , for ��� completed stages in the any-
time VCG mechanism defined for stage-based interruptions,
for the same sequence of ranges. The î factor accrues be-
cause we must take the maximal time across the Ô�Õ®ÖJ×���	M���)�°�
points rather than the average. The second term follows from
the error analysis in Lemma 4 and because we have a õ -
consensus estimator function at f � � ��	6� . Rather than include
an additional (weak) upper-bound, �9�sc/�&�$� � , on the cost ac-
crued because we must solve all � of the DJ�9�P( 
 � problems
explicitly (rather than as few as one additional problem), we
leave this factor for a tighter empirical analysis. For exam-
ple, if îo�ïõ �ö�� � , then with �'�>ü ���r� (�� , we have a slow
down of 3.1, 3.7, and 11, for -æ��BM ��)��BM � and BM � .

Conclusions
Anytime VCG mechanisms are proposed to provide any-
time optimization with self-interested agents and retain strat-
egyproofness whenever the mechanism is interrupted and
asked for an answer. An anytime mechanism can solve easy
instances optimally, while terminating early with approxi-
mate solutions on very hard instances. In doing so, we ex-
posed an intriguing tension between flexibility and strat-
egyproofness, through the analysis of agent-independent
stage estimators.

In future work we intend to complete an experimental val-
idation of the time-robustness approach, together with a cal-
ibration of the õ - and î -assumptions in more realistic do-
mains. We are interested to understand the cost of providing
robustness against attempts to manipulate via run time, and
the sensitivity to the probability - . In addition, there should
be plenty of opportunity to explore smart methods to expand
the range across time and to avoid duplication of effort.
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