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Abstract

Interacting Particle Systems—exemplified by the voter
model, iterative majority, and iterative k−majority
processes—have found use in many disciplines including dis-
tributed systems, statistical physics, social networks, and
Markov chain theory. In these processes, nodes update their
“opinion” according to the frequency of opinions amongst
their neighbors.

We propose a family of models parameterized by an
update function that we call Node Dynamics: every node
initially has a binary opinion. At each round a node is
uniformly chosen and randomly updates its opinion with the
probability distribution specified by the value of the update
function applied to the frequencies of its neighbors’ opinions.

In this work, we prove that the Node Dynamics con-
verge to consensus in time Θ(n logn) in complete graphs and
dense Erdös-Rényi random graphs when the update function
is from a large family of “majority-like” functions. Our tech-
nical contribution is a general framework that upper bounds
the consensus time. In contrast to previous work that relies
on handcrafted potential functions, our framework system-
atically constructs a potential function based on the state
space structure.

1 Introduction

We propose the following stochastic process—that we
call Node Dynamics—on a given network of n agents
parameterized by an update function f : [0, 1] → [0, 1].
In the beginning, each agent holds a binary “opinion”,
either red or blue. Then, in each round, an agent is
uniformly chosen and updates its opinion to be red with
probability f(p) and blue with probability 1−f(p) where
p is the fraction of its neighbors with the red opinion.

Node dynamics generalizes processes of interest in
many different disciplines including distributed systems,
statistical physics, social networks, and even biology.

Voter Model: In the voter model, at each round,
a random node chooses a random neighbor and
updates to its opinion. This corresponds to the
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Node Dynamics with

f(x) = x.

This models has been extensively studied in math-
ematics [15, 22, 27, 28], physics [6, 9], and even in
social networks [8, 34, 35, 36, 14]. A key question
studied is how long it takes the dynamics to reach
consensus on different network typologies.

Iterative majority: In the iterative majority dynam-
ics, in each round, a randomly chosen node updates
to the opinion of the majority of its neighbors. This
corresponds to the Node Dynamics where

f(x) =

 1 if x > 1/2;
1/2 if x = 1/2;
0 if x < 1/2.

Typically works about Majority Dynamics study 1)
when the dynamics converge, how long it takes the
dynamics to converge, and whether they converge
to the original majority opinion—that is, does ma-
jority dynamics successfully aggregate the original
opinion [25, 7, 23, 31, 37].

Iterative k-majority: In this dynamics, in each
round, a randomly chosen node collects the opinion
of k randomly chosen (with replacement) neighbors
and updates to the opinion of the majority of those
k opinions. This corresponds to the Node Dynam-
ics where

f(x) =

k∑
`=dk/2e

(
k

`

)
x`(1− x)n−`.

A synchronized variant of this dynamics is pro-
posed as a protocol for stabilizing consensus: col-
lection of n agents initially hold a private opinion
and interact with the goal of agreeing on one of
the choices, in the presence of O(

√
n)-dynamic ad-

versaries which can adaptively change the opinions
of up to O(

√
n) nodes at every round. In the syn-

chronized variant of this dynamics, Doerr et al. [17]
prove 3-majority reaches “stabilizing almost” con-
sensus on the complete graph in the presence of
O(
√
n)-dynamic adversaries. Many works extend

this result beyond binary opinions [16, 13, 5, 1].
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Iterative ρ-noisy majority model: [20, 21] In this
dynamics, in each round, a randomly chosen node
updates the majority opinion of its neighbors with
probability 1 − ρ and uniformly at random with
probability ρ.

f(x) =

 1− ρ/2 if x > 1/2;
1/2 if x = 1/2;
ρ/2 if x < 1/2.

Genetic Evolution Model: In biological systems,
the chance of survival of an animal can depend
on the frequencies of its kin and foes in the net-
work [3, 29]. Moreover, this frequency depend-
ing dynamics is also known to model the dynamics
for maintaining the genetic diversities of a popula-
tion [24, 32].

Our Contribution We focus on a large set of
update functions f that are symmetric, smooth, and
satisfy a property well call “majority-like”, intuitively
meaning that agents update to the majority opinion
strictly more often than the fraction of neighbors hold-
ing the majority opinion. We obtain tight bounds for
the consensus time—the time that it takes the system to
reach a state where each node has an identical opinion—
on Erdös-Rényi random graphs.

Our main technical tool is a novel framework for
upper bounding the hitting time for a general discrete-
time homogeneous Markov chain (X , P ), including non-
reversible and even reducible Markov chains. This
framework decomposes the problem so that we only
need to upper bound two sets of parameters for all
x ∈ X—the reciprocal of the probability of decreasing
the distance to target 1/p+(x) and the ratio of the
probability of decreasing the distance to the target and
the probability of increasing the distance to the target:
p−(x)/p+(x). Our technique can give much stronger
bounds than simply lower bounding p−(x) and upper
bounding p+(x).

Once we apply this decomposition to our consensus
time problem, the problem becomes very manageable.
We show the versatility of our approach by extending
the results to a variant of the stabilizing consensus prob-
lem, where we show that all majority-like dynamics con-
vergence quickly to the “stabilizing almost” consensus
on the complete graph in the presence of adversaries.

A large volume of literature is devoted to bound-
ing the hitting time of different Markov process and
achieving fast convergence. The techniques typically
employed are (1) showing the Markov chain has fast
mixing time [30], (2) reducing the dimension of the pro-
cess into small set of parameters (e.g. the frequency
of each opinion) and using a mean field approximation

and concentration property to control the behavior of
the process [5], or (3) using handcrafted potential func-
tions [31].

Our results fill in a large gap that these results
do not adequately cover. Mixing time is not well-
defined in non-reversible or reducible Markov chains,
and so does not apply to Markov chains with multiple
absorption states, like in the consensus time question we
study. Reducing the dimension and using a mean field
approximation fails for two reasons. First, summarizing
with a small set of parameters is not possible when the
process of interest has small imperfections (like in a
fixed Erdös-Rényi graph). Second, the mean-field of
our dynamics has unstable fixed points; in such cases
the mean field does not serve as a useful proxy for the
Markov process. Handcrafting potential functions also
runs into several problems: the first is that because we
consider dynamics on random graphs, the dynamic is
not a priori well specified; so there is no specific dynamic
to handcraft a potential function for. Secondly, we wish
to solve the problem for a large class of update functions
f , and so cannot individually hand-craft a potential
function for each one. Typically, the potential function
is closely tailored to the details of the process.

Additional Related Work Our model is similar
to that of Schweitzer and Behera [33] who study a va-
riety of update functions in the homogeneous setting
(complete graph) using simulations and heuristic argu-
ments. However, they leave a rigorous study to future
work.

2 Preliminaries

2.1 Node Dynamics Given an undirected graph
G = (V,E) let Γ(v) be the neighbors of node v and
deg(v) = |Γ(v)|.

We define a configuration x(G) : V → {0, 1} to
assign the “color” of each node v ∈ G to be x(G)(v)
so that x(G) ∈ {0, 1}n. We will usually suppress the
superscript when it is clear. We will use uppercase (e.g.,
X(G)) when the configuration is a random variable.
Moreover we say v is red if x(v) = 1 and is blue if
x(v) = 0. We then write the set of red vertices as
x−1(1). We say that a configuration x is in consensus
if x(·) is the constant function (so all nodes are red or
all nodes are blue). Given a node v in configuration x

we define rx(v) = |Γ(v)∩X−1(1)|
deg(v) to be its fraction of red

neighbors.

Definition 2.1. An update function is a mapping
f : [0, 1] 7→ [0, 1] with the following properties:

Monotone ∀x, y ∈ [0, 1], if x < y, then f(x) ≤ f(y).

Symmetric ∀t ∈ [0, 1/2], f(1/2 + t) = 1− f(1/2− t).
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Absorbing f(0) = 0 and f(1) = 1.

We define node dynamics as follows:

Definition 2.2. A node dynamics ND(G, f,X0)
with an undirected graph G = (V,E), update function
f and initial configuration X0 is a stochastic process
over configurations at time t, {Xt}t≥0 where X0 is the
initial configuration. The dynamics proceeds in rounds.
At round t, a node v is picked uniformly at random, and
we update

Xt(v) =

{
1 with probability f(rXt−1

(v))
0 otherwise

This formulation is general enough to contain many
well known dynamics such as the aforementioned voter
model, iterated majority model, and 3-majority dynam-
ics.

Note that in some of the original definitions the
nodes syncronously update; whereas, to make our pre-
sentation more cohesive, we only consider asynchronous
updates.

In this paper, we will focus on the interaction
between the update function f and geometric structure
of G. More specifically, we are interested in the
consensus time defined as following.

Definition 2.3. The consensus time of node dy-
namics ND(G, f,X0) is a random variable T (G, f,X0)
denoting the first time step that ND is in a consen-
sus configuration. The (maximum) expected con-
sensus time ME(G, f) is the maximum expected con-
sensus time over any initial configuration, ME(G, f) =
maxX0

E[T (G, f,X0)].

Now we define some properties of functions.

Definition 2.4. Given positive M1,M2, a function f :
I ⊆ R 7→ R is called M1-Lipschitz in I ⊆ R if for all
x, y ∈ I,

|f(x)− f(y)| ≤M1|x− y|.
Moreover, f is M2-smooth in I ⊆ R if for all x, y ∈ I,

|f ′(x)− f ′(y)| ≤M2|x− y|.

2.2 Potential Theory for Markov Chains Let
M = (Xt, P ) be a discrete time-homogeneous Markov
chain with finite state space Ω and transition matrix P .
For x, z ∈ Ω, we define τa(x) to be the hitting time for
a with initial state x:

τa(x) , min{t ≥ 0 : Xt = a,X0 = x},

and τA(x) to be the hitting time to a set of state A ⊆ Ω:

τA(x) , min{t ≥ 0 : Xt ∈ A,X0 = x}.

By the Markov property, the expected hitting time
can be written as linear equation.

EM[τA(x)] =

{
1 +

∑
y∈Ω Px,yEM[τA(y)] if x 6∈ A,

0 if x ∈ A

Due to the memory-less property of Markov chain,
sometimes it is useful to analyze its first step. Let’s
consider a general measurable function w : Ω 7→ R. If
the Markov chain starts at state X = x, the next state
is the random variable X ′, then the average change of
w(X) in one transition step is given by

(Lw)(x) , EM[w(X ′)−w(X)|X = x] =
∑
y∈Ω

Px,yw(y)−w(x)

To reduce the notation we will use EM[w(X ′)|X] to de-
note the expectation of the measurable function w(X ′)
given the previous state at X.

Definition 2.5. Given Markov chain M with state
space Ω, D ( Ω, and two real-valued functions ψ, φ
with domain Ω, we define the Poisson equation as
the problem of solving the function w : Ω 7→ R such that

Lw(x) = −φ(x) where x ∈ D,
w(x) = ψ(x) where x ∈ ∂D.

where the ∂D , ∪x∈Dsupp p(x, ·) \ D is the exterior
boundary of D w.r.t the Markov chain.

Note that solving the expected hitting time of set A is a
special case of the above problem by taking D = Ω \A,
φ(x) = 1 and ψ(x) = 0. The next fundamental theorem
shows that super solutions to an associated boundary
value problem provide upper bounds for the Poisson
equation in Definition 2.5.

Theorem 2.1. (Maximum principle [19]) Given
Markov Chain M with state space Ω, D ( Ω, and
two real-valued functions ψ, φ with domain Ω, suppose
s : Ω 7→ R is a non-negative function satisfying

Ls(x) ≤ −φ(x) where x ∈ D,
s(x) ≥ ψ(x) where x ∈ ∂D.

Then s(x) ≥ w(x) for all x ∈ D.

Corollary 2.1. (Super solution for hitting time)
Given Markov Chain M with state space Ω and a set
of states A ( Ω, suppose sA : Ω 7→ R is a non-negative
function satisfying

LsA(x) ≤ −1 where x 6∈ A,
sA(x) ≥ 0 where x ∈ A.

(2.1)

Then sA(x) ≥ EM[τA(x)] for all x 6∈ A. Moreover we
call sA a potential function for short.
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2.3 Concentration Inequalities

Theorem 2.2. ([4]) Let X = (x1, . . . , xN ) be a finite
set of N real numbers, that X1, . . . , Xn denote a random
sample without replacement from X and that Y1, . . . , Yn
denote a random sample with replacement from X . If
f : R 7→ R is continuous and convex, then

Ef

(
n∑
i=1

Xi

)
≤ Ef

(
n∑
i=1

Yi

)
Theorem 2.3. (A Chernoff bound [18]) Let X ,∑n
i=1Xi where Xi for i ∈ [n] are independently dis-

tributed in [0, 1]. Then for 0 < ε < 1

P[X > (1 + ε)EX] ≤ exp

(
−ε

2

3
EX
)

P[X < (1− ε)EX] ≤ exp

(
−ε

2

2
EX
)

If a bounded function g on a probability space
(X,P ) which is Lipschitz for most of the measure in X,
then the following theorem prove a concentration prop-
erty of g by using union bound and Azuma inequality.

Theorem 2.4. (Bad events [18]) Consider a ran-
dom object X = (X1, . . . , Xn) with probability mea-
sure P. Let E be an event in the space of X. Fix a
real-valued function g with domain X which is bounded,
m ≤ g(X) ≤M . Let ci be the maximum effect of chang-
ing the ith input coordinate of g conditioned both inputs
being in E:

sup
x,x′∈E,∀j 6=i xj=x′j

|g(x)− g(x′)| ≤ ci.

Then,

P
[
g(X) > E[g(X)] + t+ (M −m)P[¬E]

∣∣∣∣E]
is bounded above by exp

(
−2t2/

(∑
i c

2
i

))
.

We say a sequence of events {An}n≥1 happens with
high probability if limn→∞ P[An] = 1 that is P[An] =
1− o(1).

2.4 Erdös-Rényi Random Graphs Here we
present the definition of Erdös-Rényi random graphs
and show several well-known properties of them that
we need.

Definition 2.6. (Erdös-Rényi Random Graph)
Gn,p is a random undirected graph on node set V = [n]1

where each pair of nodes is independently connected
with a fixed probability p. We further use Gn,p to denote
this random object.

1[n] = {1, 2, . . . , n}

Let AG be the adjacency matrix of G, so (AG)i,j = 1
if vi ∼ vj and 0 otherwise, and Ā = EGn,p [AG], so
Āi,j = p if i 6= j and 0 otherwise. Let deg(v) be the
degree of node v.

Definition 2.7. The weighted adjacency matrix of
undirected graph G is defined by

MG(i, j) =

{
1√

deg(vi)deg(vj)
if (AG)i,j = 1;

0 otherwise .

Definition 2.8. (Expansiveness [12]) For
λ ∈ [0, 1], we say that a undirected graph G is a
λ-expander if if λk(MG) ≤ λ for all k > 1 where
λk(MG) is the k-th largest eigenvalue.

Theorem 2.5. (Spectral profile of Gn,p [11])
For Gn,p, we denote I as identity matrix and J as the

matrix that has ones. If Gn,p has p = ω( logn
n ), then

with probability at least 1− 1/n, for all k

|λk(MG)− λk(M̄)| = O
(√

log n/(np)
)

where (M̄)i,j = 1
n−1 if i 6= j and (M̄)i,i = 0.

Because the spectrum of M̄ is {1,−1/(n − 1)} where
−1/(n − 1) has multiplicity n − 1, we can have the
following corollary

Corollary 2.2. If p = ω( logn
n ), the G ∼ Gn,p is

O
(√

logn
np

)
-expander with probability 1−O(1/n),

Let e(S, T ) denote the number of edges between S
and T (double counting edges from S ∩T to itself), and
let vol(S) count the number of edges adjacent to S. The
following lemma relates the number of edges between
two sets of nodes in an expander to their expected
number in a random graph.

Lemma 2.1. (Irregular mixing lemma [10]) If G
is a λ-expander, then for any two subsets S, T ⊆ V :∣∣∣∣e(S, T )− vol(S)vol(T )

vol(G)

∣∣∣∣ ≤ λ√vol(S)vol(T )

Finally, let E(δd; v) denote the event that the degree
of some fixed node v is between (1−δd)np and (1+δd)np
and let E(δd) = ∩v∈V E(δd; v) a nearly uniform
degree event . By applying theorem 2.3 we yields the
following lemma.

Lemma 2.2. (Uniform degree) For any v ∈ V , if
G ∼ Gn,p

(2.2) P[E(δd; v)] ≤ 2 exp
(
−δ2

dnp/3
)

Furthermore, by union bound

(2.3) P[E(δd)] ≤ 2n exp
(
−δ2

dnp/3
)
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3 Warm-up: Majority-liked Update Function
on Complete Graph

In this section we consider majority-like node dynamics
on the complete graph Kn with n nodes in which every
pair of nodes has an edge (no self-loops). We use this as
a toy example to give intuition for dense Erdös-Rényi
graphs even though we will obtain better bounds later.

Theorem 3.1. Let M = ND(Kn, f,X0) be a node
dynamic over the complete graph Kn with n nodes. If
the update function f satisfies ∀x : 1/2 < x < 1 then
x ≤ f(x), then the maximum expected consensus time
of a node dynamic over Kn is

ME(Kn, f) = O
(
n2
)
.

A standard method of proving fast convergence is
to guess a potential function of each state and prove the
expectation decreases by 1 after every step—this is just
an application of corollary 2.1.

As a warm-up, we will prove theorem 3.1 by guess-
ing a potential function and applying corollary 2.1.

Proof. [theorem 3.1] Given a configuration x, define
Pos(x) , |x−1(1)| then for all red nodes v where

x(Kn)(v) = 1 have rx(v) = Pos(x)−1
n−1 ; otherwise rx(v) =

Pos(x)
n−1 .

Because the node dynamics M is on the com-
plete graph, M is lumpable with respect to partition
{Σl}0≤l≤n where Σl = {x ∈ Ω : Pos(x) = l} such that
for any subsets Σi and Σj in the partition, and for any
states x, y in subset Σi,∑

z∈Σj

P (x, z) =
∑
z∈Σj

P (y, z)

Furthermore, inspired by an analysis of Voter
Model [2] we consider ψ : [n] 7→ R as

ψ(k) = (n− 1)
[
k(H(n− 1)−H(k − 1))

+ (n− k)(H(n− 1)−H(n− k − 1))
]

whereH(k) ,
∑k
`=1

1
` , and define the potential function

as

(3.4) φ(x) = ψ(Pos(x))

The proof of the following claim is deferred to
the full version, and here we just give some intuition
as to why this potential function for the voter model
works. The sequence (Pos(Xt))t≥0 can be seen as
a random walk on 0, 1, . . . , n with drift2. Moreover
the drift depends on f(Pos(x)) − Pos(x). For voter

2The formal definition of drift is in Equation (4.8).

model f(x) = x, there is no drift. For majority-like
function because there is a positive drift toward n when
Pos(x) > n/2; and a negative drift toward 0 when when
Pos(x) < n/2. Informally the drift is always helping
and thus the potential function for voter models works.

Claim 3.1. Our definition of φ satisfies the inequali-
ties (2.1): Given Markov Chain M = ND(Kn, f,X0)
in theorem 3.1, φ defined in (3.4) are non-negative and
satisfy

Lφ(x) ≤ −1 where x 6= 0n, 1n,

φ(x) ≥ 0 where x = 0n, 1n.

Combining claim 3.1 and corollary 2.1, we have

EM[T (Kn, f, x)] ≤ φ(x).

By direct computation, if 0 ≤ k < n, ψ(k+ 1)−ψ(k) =
(n− 1)(H(n−k− 1)−H(k)). Therefore, the maximum
ψ(k) happens at k = bn/2c,

ME(Kn, f) ≤ ψ(bn/2c) ≤ (ln 2)n2,

and completes our proof.

4 Smooth Majority-like Update Function on
Dense Gnp

In this section, we consider the smooth Majority-liked
update function defined as follows:

Definition 4.1. We call an update function f a
smooth majority-like update function if it satisfies ∀x :
1/2 < x < 1 then x < f(x) and the following technical
conditions hold:

Lipschitz There exists M1 such that f is M1-Lipschitz
in [0, 1].

Condition at 1/2 There exists an open interval I1/2
containing 1/2 and constants 1 < M̌1, 0 < M̌2 such
that f is M̌2-smooth in I1/2 and 1 < M̌1 ≤ f ′(1/2).

Condition at 0 and 1 There exists intervals I0 3 0,
I1 3 1 and a constant M̂1 < 1 such that ∀x ∈ I0,
f(x) ≤ M̂1x and ∀x ∈ I1, 1− f(x) ≤ M̂1(1− x).

Intuitively, the majority-like update function should be
“smooth” and not tangent with y = x. The following
figure shows an example of smooth majority-like update
function. Now we are ready to state our main theorem.

Theorem 4.1. Let M = ND(G, f,X0) be a node dy-
namic over G ∼ Gnp with p = Ω(1), and let f be a
smooth majority-like function. Then the expected con-
sensus time of a node dynamic over G is

ME(G, f) = O (n log n)

with high probability.
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Figure 1: An example of smooth majority-like update
function.

This theorem shows the fast convergence rate of
this process. Note that there is some chance of getting
a disconnected graph G ∼ Gn,p which results in a
reducible Markov chainM which cannot converge from
some initial configurations. Therefore, we can only ask
for the fast convergence result with high probability.

We note that, the technical conditions exclude
interactive majority updates, which we leave for future
work.

4.1 Proof Overview Here we will first outline the
structure of the proof. In section 4.2 we propose a
paradigm for proving an upper bound for the hitting
time when the state space has special structure. In
section 4.3, we use the result in section 4.2 to prove
theorem 4.1.

where large literature have devote to different pro-
cess. Most of them achieve fast convergence result by us-
ing handcraft potential function or showing the Markov
chain has fast mixing time. However it is not easy to
find clever potential function for any process, and the
fast mixing time is not well defined in reducible Markov
chain. Recall that the expected consensus time is

τ(x) , EM[T (G, f, x)]

which is exactly the hitting time of states 0n and 1n.
However in contrast to section 3, finding a clever poten-
tial function is much harder here. We prove theorem 4.1
using that the expected hitting can be formulated as a
system of linear equations (2.1) and by explicitly esti-
mating an upper bound of this system of linear equa-
tions. Moreover, following the intuition in section 3,
the Markov chain M can be nearly characterized by
one parameter Pos(x) when the node dynamics is on
a graph that is close to the complete graph. We ex-

ploit this structure of our Markov chain and construct
a potential function for Equations (2.1).

4.2 A Framework for Upper Bounding the Hit-
ting Time We want to upper bound the hitting time
from arbitrary state x to {0n, 1n} denoted as τ(x) of
a given time-homogeneous Markov chain M = (Ω, P )
with finite state space Ω = {0, 1}n where P (x, y) > 0
only if the states x, y only differ by one digit, |x−y| ≤ 1.

We let Pos(x) be the position of state x ∈ Ω:

(4.5) Pos(x) , |x−1(1)|, and pos(x) , Pos(x)/n

and the bias of x as
(4.6)
Bias(x) , |n/2− Pos(x)| , and bias(x) , Bias(x)/n

Note that the Bias(x) = n/2 if and only if x = 0n, 1n.
Suppose that M can be “almost” characterized

by one parameter Bias(x). Informally, we want the
transitions at states x and y to be similar if Bias(x) =
Bias(y). Therefore with the notion of first step analysis
we define {(p+

G(x), p−G(x))}x∈Ω where

p+
G(x) = PM[Bias(X ′) = Bias(X) + 1|X = x],

p−G(x) = PM[Bias(X ′) = Bias(X)− 1|X = x].
(4.7)

Moreover, we call p+
G(x) the exertion and define

the drift of state x as follows

(4.8) D(x) , EM[Bias(X ′)−Bias(X)|X = x].

It is easy to see D(x) = p+(x)− p−(x).
SinceM can be almost characterized by one param-

eter, Bias(x), M is almost lumpable with respect to
the partition induced by Bias(·). The following lemma
gives us a scheme for constructing an upper bound for
the hitting time:

Lemma 4.1. (Pseudo-lumpability lemma) Let
M = (Ω, P ) have finite state space Ω = {0, 1}n with
even n3 and P (x, y) > 0 only if the states x and y
differ in at most one coordinate and

d0 = max
x:Bias(x)=0

1

p+(x)

dl = max
x:Bias(x)=l

1

p+(x)
+ max
x:Bias(x)=l

(
p−(x)

p+(x)

)
dl−1

(4.9)

where 0 < l < n/2, and {(p+(x), p−(x)}x∈Ω are as
defined in (4.7). Then the maximum expected hitting

3To avoid cumbersome notion of parity we only consider n to
be even here.
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time from state x to {0n, 1n} can be bounded as follows:

max
x∈Ω

EM[τ(x)] ≤
∑

0≤`<n/2

d`

where τ(x) denotes the hitting time from state x to
{0n, 1n}.

Remark 4.1. At first glance it appears this lemma
“couples” the process M with a birth-and-death
chain [26], but is actually stronger as the following ex-
ample illustrates. We define an unbiased random walk
where the self transition probability of nodes differs. For
all x ∈ {0, 1}n \ {0n, 1n} let p+(x) = p−(x) = 1

2+x1
,

and 0n and 1n are absorbing states. This lemma yield
a polynomial time upper bound because 1/p+(x) = 3
and p−(x)/p+(x) = 1. On the other hand, consider
a birth-and-death chain on {0, 1, . . . , n/2}, such that
P (k, k+ 1) = minx∈Ω:Bias(x)=k p

+(x) and P (k, k− 1) =
maxx∈Ω:Bias(x)=k p

−(x). Because P (k, k+1) = 1/3 and
P (k, k−1) = 1/2 for all 0 < k < n/2, the corresponding
birth-and-death chain takes exponential time to reach
n/2.

lemma 4.1 can be derived from corollary 2.1 and is
proven in appendix A. Intuitively, to get a potential
function s(x) for hitting time τ(x), we order the states
in terms of the value of Bias(·), and take the process as
a non-uniform random walk on [n]. Then we recursively
estimate s(x) for each x in increasing order of Bias(x).

To use lemma 4.1, to upper bound τ(x) we need to
prove for every configurations x ∈ Ω

1. An upper bound for 1/p+(x).

2. An upper bound for p−(x)/p+(x).

In theorem 4.2 we give a framework that uses the
upper bounds for 1/p+(x) and p−(x)/p+(x) to obtain
upper bounds for expected hitting time. To have
some intuition about the statement of the theorem,
observe that if the drift D(x) is bounded below by some
positive constant both 1/p+(x) and p−(x)/p+(x) have
nice upper bounds. However, this bound fails when the
drift is near zero or even negative. Taking our node
dynamics on dense Gnp as an example, when the states
have either very small or very large bias(x) the drift
D(x) can be very close to zero or even negative. The
drift near 1/2 is close to 0 because the effects of red
and blue largely cancel each other. The drift near the
extreme point is small because there are very few nodes
outside the majority.

As a result, we partition the states into subsets, and
take addition care on the sets of states with small drift.

In theorem 4.2 we partition the states into Σs,Σm,Σl

according to the bias as follows:

Σs = {x ∈ Ω : bias(x) < ε̌}
Σm = {x ∈ Ω : ε̌ ≤ bias(x) ≤ 1/2− ε̂}
Σl = {x ∈ Ω : 1/2− ε̂ < bias(x)}

(4.10)

The small constants ε̂ and ε̌ depend on the process.

Theorem 4.2. Given M = (Ω, P ) defined in
lemma 4.1, if there exist constants ε̂ and ε̌ defin-
ing the partition Σs,Σm, and Σl and some constants
p+, A1, A2, A3, B1 > 0, and 0 < r,A2, A3 < 1 such that

p+ <p+(x) ≤ 1 if x ∈ Σs,Σm(4.11)

r <
p+(x)

(1/2− bias(x))
≤ 1 if x ∈ Σl(4.12)

and

p−(x)

p+(x)
≤ 1 +A1

(
B1√
n
− bias(x)

)
if x ∈ Σs(4.13)

p−(x)

p+(x)
≤ 1−A2 if x ∈ Σm(4.14)

p−(x)

p+(x)
≤ 1−A3 if x ∈ Σl,(4.15)

the maximum expected hitting time is

max
x∈Ω

EM[τ(x)] = O(n log n)

where τ(x) is the hitting time from state x to {0n, 1n}.

The proof of theorem 4.2, it is rather straightfor-
ward using lemma 4.1, and carefully constructing the
potential function from the recursive Equation (4.9).

4.3 Proof of Theorem 4.1 In this section, we will
use theorem 4.2, to prove an O(n log n) time bound by
exploiting properties of our process. Specifically, let our
node dynamic M = ND(G, f,X0) be a node dynamic
over G sampled from Gn,p, it is sufficient to prove an
upper bound for 1/p+

G(x) and p−G(x)/p+
G(x). Note that

we use subscripts to emphasize the dependency of the
graph G.

To apply theorem 4.2, we partition the states into
three groups Σs,Σm, and Σl defined in (4.10). The
constants ε̌ and ε̂ depend on the update function f and
the probability of an edge p and will be specified later.
Figure 4.3 illustrates the partitions of the states.

The following lemma upper bounds 1/p+
G(x):

Lemma 4.2. (lower bound for p+
G(x)) Given node

process M on G, if G λ-expander with nearly uniform
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Figure 2: An illustration of partition in section 4.3.

degree E(δd), δd < 1 and λ2 < 1−δd
1+δd

·min{ ε̂18 ,
(1/2−ε̂)2

2 },
then for p+ , ε̂

2f
(
ε̂
2

)
,

p+ < p+
G(x) ≤ 1 if x ∈ Σs ∪ Σm(4.16)

1
4 <

p+G(x)

(1/2−bias(x)) ≤ 1 if x ∈ Σl.(4.17)

This lemma is proved by apply mixing lemma 2.1 to
show that the probability of increasing bias is (1) larger
than some constant for x ∈ Σs∪Σm lemma B.1 and (2)
proportional to the size of minority in Σl in lemma B.2.
The proof details are in appendix B.

The second part follows from the following lemma:

Lemma 4.3. (upper bound for p−G(x)/p+
G(x))

Given node process M on G, if G ∼ Gn,p, then
there exist positive constant A1, A2, A3, B1, and
0 < A2, A3 < 1 such that, with high probability,

p−G(x)

p+
G(x)

≤ 1 +A1

(
B1√
n
− bias(x)

)
if x ∈ Σs(4.18)

p−G(x)

p+
G(x)

≤ 1−A2 if x ∈ Σm(4.19)

p−G(x)

p+
G(x)

≤ 1−A3 if x ∈ Σl(4.20)

Instead of bounding p−G(x)/p+
G(x) directly, the drift

DG(x) , p+
G(x) − p−G(x) is more natural to work

with. Taking the complete graph as example, DG(x) =
f(pos(x)) − pos(x). Therefore instead of proving an
upper bound of p−G(x)/p+

G(x) directly, we prove an lower
bound for the drift in Appendix B (lemma B.3, B.4, B.5,
and B.8). Combining with lemma 4.2, these gives us an
desired upper bound for p−G(x)/p+

G(x).

Proof. [theorem 4.1] By corollary 2.2 G ∼ Gn,p is a

O
(√

logn
np

)
-expander with high probability. Thus, we

can apply lemma 4.2 and 4.3 to theorem 4.2, which
finishes the proof.

5 The Stabilizing Consensus Problem

The consensus problem in the presence of an adversary
(known as Byzantine agreement) is a fundamental prim-
itive in the design of distributed algorithms.

For the stabilizing-consensus problem—a variant
of the consensus problem, Doerr et al. [17] proves
synchronized 3-majority converges fast to an almost
stable consensus on a complete graph in the presence of
O(
√
n)-dynamic adversaries which, at every round, can

adaptively change the opinions of up to O(
√
n) nodes.

Here we consider an asynchronous protocol for this
problem:

Definition 5.1. Given a complete network of n anony-
mous nodes with update function f , and F ∈ N. In the
beginning configuration, each node holds a binary opin-
ion specified by x0(·). In each round:

1. An adaptive dynamic adversary can arbitrarily cor-
rupt up to F agents, and change the reports of their
opinions in this run (the true opinion of these nodes
is restored and will be reported once the adversary
stops corrupting them).

2. A randomly chosen node updates its opinion accord-
ing to node dynamics. (If the chosen node is cor-
rupted by adversary in that run, the adversary can
arbitrarily update the opinion of the chosen node.)

Definition 5.2. (nγ-almost consensus) We say a
complete network of n anonymous nodes reaches an nγ-
almost consensus if all but O(nγ) of the nodes support
the same opinion.

Our analysis in section 4 can be naturally extended
to the stabilizing consensus problem and proves all
majority-liked update functions (definition 4.1) are sta-
bilizing almost consensus protocols and have the same
convergence rate.

Theorem 5.1. Given n nodes, fixed γ > 1/2, F =
O(
√
n), and initial configuration X0 ∈ {0, 1}n, the

node dynamic ND(Kn, f, x0) on a complete graph with
update function f reaches an nγ-almost consensus in the
presence of any F -corrupt adversary within O(n log n)
rounds with high probability.

Remark 5.1. The goal of this section is not to promote
majority-liked node dynamics as a state-of-art protocol
for the stabilizing consensus problem, but to show the
versatile power of the our framework of proving conver-
gence time in section 2.1. Additionally we modify the
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formulation of the problem here to make our presenta-
tion more cohesive.

Let the random process with the presence of some
fixed F -dynamic adversary AF defined in theorem 5.1
be denoted X (AF ) = (Xt)t≥0. Observe that our
framework in section 4.2 only works for Markov chain,
but with the presence of adaptive adversary the process
is no longer a Markov chain. As a result, we “couple”
this process with a nice Markov chain Y(F ) = (Yt)t≥0,
and use the Markov chain as a proxy to understand the
original process.

The proof has two parts: we first define the proxy
Markov chain Y(F ) and prove an upper bound of
almost consensus time by using the tools in section 4.2.
Secondly, we construct a monotone coupling between
Y(F ) and X (AF ) to prove X (AF ) also converges to
almost consensus fast.

5.1 Upper Bounding the Expected Almost
Consensus Time for Y(F ). With the notation de-
fined in section 4, we define Y(F ). Informally, we con-
struct Y(F ) as a pessimistic version of ND(Kn, f,X0)
with the presence of an adversary: at every round the
adversary tries to push the state toward the unbiased
configuration, and it always corrupts F nodes with the
minority opinion.

Initially, Y0 = X0. At time t if we set y = Yt, Yt+1

is uniformly sampled from

{y′ ∈ Ω : ∃i ∈ [n],∀j 6= i, y′j = yj}
∩ {y′ ∈ Ω : Bias(y′) = Bias(y) + 1}

(5.21)

with probability max{f
(

1
2 + bias(y)

) (
1
2 − bias(y)

)
−

(M1+1)F
n , 0}, or uniformly sampled from

{y′ ∈ Ω : ∃i ∈ [n],∀j 6= i, y′j = yj}
∩ {y′ ∈ Ω : Bias(y′) = Bias(y)− 1}

(5.22)

with probability min{f
(

1
2 − bias(y)

) (
1
2 + bias(y)

)
+

(M1+1)F
n , 1}; otherwise Yt+1 stays the same: Yt+1 = y.
Recall that the time to reach an nγ-almost consen-

sus is the hitting time to the set of states

Aγ , {y ∈ Ω : bias(y) > 1/2− n−(1−γ)},

and we use Tγ(z) to denote the hitting time to a set of
state Aγ .

Lemma 5.1. The expected nγ-almost consensus time of
the Markov chain Y is maxy EY(F )[Tγ(y)] = O (n log n).

This lemma is very similar to theorem 4.1 and we defer
the proof to the full version.

5.2 Monotone Coupling Between Y(F ) And
X (AF ). To transfer the upper bound of Y(F ) to
X (AF ), we need to build a “nice” coupling between
them which is characterized as follow:

Definition 5.3. (Monotone Coupling) Let X,Y
be two random variables on some partially ordered set
(Σ,≥). Then a monotone coupling between X and Y
is a measure (X̃, Ỹ ) on Σ× Σ such that

• The marginal distributions X̃ and X have the same
distribution;

• The marginal distributions Ỹ and Y have the same
distribution;

• P(X̃,Ỹ )[X̃ ≥ Ỹ ] = 1.

Note that the function bias(·) induces a natural
total order ≤bias of our state space Ω = {0, 1}n
such that for x, y ∈ Ω, x ≤bias y if and only if
bias(x) ≤ bias(y). We can also define a partial order
over sequences of states: given two sequences (Xt)t≥0,
(Yt)t≥0 we call (Xt)t≥0 ≤bias (Yt)t≥0 if ∀t ≥ 0 Xt ≤bias
Yt. We use calligraphic font to represent the whole
random sequence, e.g. Z = (Zt)t≥0.

Lemma 5.2. There exists a monotone coupling (X̃ , Ỹ)
between X (AF ) and Y(F ) under the partial order ≤bias
The proof of this lemma is straightforward, and we defer
the proof to the full version.

5.3 Proof of Theorem 5.1

Proof. [theorem 5.1] We call an event A increasing if
x ∈ A implies that any y ≥ x is also in A. Observe
that Aγ := {y ∈ Ω : bias(y) > 1/2 − n−(1−γ)} is
increasing with respect to ≤bias. Therefore given a
random sequence Z = (Zt)t≥0

PZ [Tγ(z) > τ ] = PZ
[
max
t≤τ

bias(Zt) ≤ 1/2− n−(1−γ)

]
By lemma 5.2, for fixed τ > 0 and initial configura-

tion z ∈ Ω:

PX (AF )[Tγ(z) > τ ]

= PX
[
max
t≤τ

bias(Xt) ≤ 1/2− n−(1−γ)

]
= P(X̃ ,Ỹ)

[
max
t≤τ

bias(X̃t) ≤ 1/2− n−(1−γ)

]
= P(X̃ ,Ỹ)

[
max
t≤τ

bias(X̃t) ≤ 1/2− n−(1−γ), X̃ ≥bias Ỹ
]

≤ P(X̃ ,Ỹ)

[
max
t≤τ

bias(Ỹt) ≤ 1/2− n−(1−γ)

]
= PY(F )[Tγ(z) > τ ].
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On the other hand, applying Markov’s inequality

PY(F )[Tγ(z) > τ ] ≤
EY(F )[Tγ(z)]

τ
,

and by lemma 5.1, PY(F )[Tγ(z) > τ ] can be arbitrary
small by taking τ = O (n log n) which finishes the proof.

6 Future Work

This work leaves several open questions. The most glar-
ing question is whether we can analyze the maximum
consensus time of iterative majority dynamic on Erdös
Rényi random graphs. Another question is if we prove
the upper bounds of consensus time on sparse Erdös
Rényi random graphs, or even general expander graphs?
On the other hand, can we prove lower bound for the
consensus time on these graphs?

To answer these questions, we may need a more re-
fined understanding of “expansiveness” in graph theory,
because the conventional notion for expansion/pseudo-
randomness of graph can tell us the average connection
between the nodes in a set and its complement. How-
ever for node dynamics, we need to know: given a set of
nodes how every nodes in the set connects to the set’s
complement.
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A Proofs in Section 4.2

Proof. [lemma 4.1] Define s : Ω 7→ R as follows

s(x) =

n/2−1∑
`=Bias(x)

d`, where Bias(x) < n/2

s(x) = 0, where Bias(x) = n/2

Note that the value of s only depends on the bias of
each state and for x, y ∈ Ω with Bias(x) = Bias(y)
we have s(x) = s(y), so we can abuse the notion
and consider potential function with integral domain
s : [0, n/2 − 1] 7→ R such that s(l) , s(x) for some x
such that Bias(x) = l.

To prove s is a valid super solution of τ , by
corollary 2.1 it is sufficient for us to show that

Ls(x) ≤ −1 where Bias(x) < n/2,(A.1)

s(x) ≥ 0 where Bias(x) = n/2.(A.2)
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For the Equation (A.1), if Bias(x) = ` and 0 < ` < n/2,

Ls(x) =
∑
y∈Ω

Px,ys(y)− s(x)

=
∑
y∈Ω

Px,y
(
s(Bias(y))− s(Bias(x))

)
By the definition of M, P (x, y) > 0 only if the states
x, y differ by at most one digit, we only need to consider
the states y such that |Bias(y)−`| ≤ 1, by the defintion
of s,

Ls(x) =
∑

y:Bias(y)=`+1

Px,y
(
s(`+ 1)− s(`)

)
+

∑
y:Bias(y)=`−1

Px,y
(
s(`− 1)− s(`)

)

= −

 ∑
y:Bias(y)=`+1

Px,y

 d` +

 ∑
y:Bias(y)=`−1

Px,y

 d`−1

= −PM[Bias(X ′) = `+ 1|X = x]d`

+ PM[Bias(X ′) = `− 1|X = x]d`−1

by the definition of p+(x) and p−(x)

Ls(x) = −p+(x)d` + p−(x)d`−1

≤ −p+(x)

(
1

p+(x)
+
p−(x)

p+(x)
d`−1

)
+ p−(x)d`−1 = −1

where the last equality comes from the definition of d`
On the other hand, if Bias(x) = 0

Ls(x) =
∑

y:Bias(y)=1

Px,y
(
s(1)− s(0)

)
= −PM[Bias(X ′) = 1|X = x]d0 = −p+(x)d0 ≤ −1.

Equation (A.2) automatically holds by the definition of
s.

Therefore, applying corollary 2.1 we have

maxx∈Ω τ(x) ≤ maxx∈Ω s(x) =
∑n/2−1
`=0 d`.

The proof of theorem 4.2, which is rather straight-
forward but tedious, uses lemma 4.1 and a careful es-
timation of the potential function from the recursive
equation (4.9).

is rather straightforward but tedious by use of
lemma 4.1, and estimation of the potential function
from the recursive Equation (4.9) carefully.

Proof. [theorem 4.2] With the help of lemma 4.1, we
only need to give an upper bound the recursive equa-
tions (4.9). With the condition in the statements, sup-
pose we prove the following equations: There exists

some positive constant C1, C2, C3, C4, D1 such that

d` ≤ C1

√
n where ` < D1

⌈√
n
⌉
,(A.3)

d` ≤ C2
n

`
where D1

⌈√
n
⌉
≤ ` ≤ ε̌n,(A.4)

d` ≤ C3 where ε̌n < ` ≤ (1/2− ε̂)n,(A.5)

d` ≤ C4
n

n/2− `
where (1/2− ε̂)n < ` < n/2(A.6)

Supposing the above inequalities are true, by lemma 4.1
we can complete the proof as follows:

max
x∈Ω

EM[T (G, f, x)] ≤
n/2−1∑
`=0

d`

≤
D1d√ne−1∑

`=0

C1

√
n+

ε̌n∑
`=D1d√ne

C2
n

`

+

(1/2−ε̂)n∑
`=ε̌n+1

C3 +

n/2−1∑
`=(1/2−ε̂)n+1

C4
n

n/2− `

≤ D1

⌈√
n
⌉
· C1

√
n+ C2n

ε̌n∑
`=D1d√ne

1

`
+

C3(1/2− ε̂− ε̌)n+ C4n

ε̂n−1∑
`=1

1

`

= O(n lnn)

Now we are going to use induction to prove Equa-
tions (A.3), (A.4), (A.5), and (A.6).

Equation (A.3): We first use induction to prove

the following inequality: If A(n) = 1
p+ +

√
n

p+A1B1
and

B(n) =
√
n

p+A1B1
, for all `, 0 ≤ ` ≤ D1 d

√
ne

(A.7) d` ≤ A(n)

(
1 +

A1B1√
n

)`
−B(n)

Because for all constant D1 there exists some constant

C1 > 0 such that A(n)
(

1 + A1B1√
n

)`
−B(n) ≤ C1

√
n for

all ` ≤ D1 d
√
ne, the Equation (A.3) is proven once the

Equation (A.7) is true. Now, let’s prove (A.7).
For ` = 0, applying Equation (4.11) to Equa-

tion (4.9), we have

d0 = max
x∈Ω:Bias(x)=0

1

p+(x)

≤ max
x∈Σs∪Σm

1

p+(x)

(because {x ∈ Ω : Bias(x) = 0} ⊂ Σs ∪ Σm)

≤ 1/p+(by Equation (4.11))

= A−B
(by the definition of A and B)
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Suppose d`−1 ≤ A
(

1 + A1B1√
n

)`−1

− B for some

1 < ` < D1 d
√
ne. Since ` < D1 d

√
ne − 1 < ε̌n,

{x ∈ Ω : Bias(x) = `} ⊂ Σs and we can apply
equation (4.13) and (4.11) to equation (4.9) and have

d` ≤
1

p+
+

(
1 +A1

(
B1√
n
− `
))

d`−1(A.8)

≤ 1

p+
+

(
1 +

A1B1√
n

)
d`−1

By induction hypothesis, and definition of B we have

≤ 1

p+
+

(
1 +

A1B1√
n

)(
A

(
1 +

A1B1√
n

)`−1

−B

)

≤ A
(

1 +
A1B1√

n

)`
−B −

(
A1B1√

n
B − 1

p+

)
≤ A

(
1 +

A1B1√
n

)`
−B

Equation (A.4): We use induction again to prove
Equation (A.4) holds for D1 d

√
ne ≤ ` ≤ ε̌n.

For ` = D1 d
√
ne, we already have d` ≤ C1

√
n ≤

C2
n

D1d√ne so if we take C2 ≥ C1D1

d` ≤ C1

√
n ≤ C2

n

D1 d
√
ne

= C2
n

`
.

Suppose d`−1 ≤ C2
n
`−1 for some D1 d

√
ne < ` < ε̌n.

Because {x ∈ Ω : Bias(x) = `} ⊂ Σs, by equation (A.8)
and induction hypothesis we have

d` ≤
1

p+
+

(
1 +A1

(
B1√
n
− `
))

d`−1

=
1

p+
+

(
1−

(
A1`−A1B1

√
n

n

))
d`−1

and

d` ≤
1

p+
+

(
1−

(
A1`−A1B1

√
n

n

))
C2

n

`− 1

=
C2n

`
+

(
1

p+
+

(
1− A1`−A1B1

√
n

n

)
C2n

`− 1
− C2n

`

)
.

Therefore equation (A.4) is proven if 1
C2p+

+(
1− A1`−A1B1

√
n

n

)
n
`−1 −

n
` ≤ 0. By taking C2 ≥ 2

p+A2

and D1 ≥ 4B1 and D2
1 ≥ 4/A1 we have

A1

2
≤ A1 −

A1B1

D1
− 1

D2
1

≤ n

`

(
A1`−A1B1

√
n

n
− 1

`

)(because ` > D1 d
√
ne)

≤ n

`− 1

(
A1`−A1B1

√
n

n
− 1

`

)
=
n

`
− n

`− 1

(
1− A1`−A1B1

√
n

n

)
Because C2 ≥ 2

p+A2
, we have 1

C2p+
≤ A1

2 and using the
above inequality we get

1

C2p+
≤ n

`
− n

`− 1

(
1− A1`−A1B1

√
n

n

)
which completes proving Equation (A.4). Finally, by
the Equation (A.4)

(A.9) dε̌n ≤ C2
n

ε̌n
= C2/ε̌.

Equation (A.5): We use induction to prove d` is
bounded above by some constant C3 for all ` such that
ε̌n < ` ≤ (1/2− ε̂)n.

For ` = ε̌n + 1, because {x ∈ Ω : Bias(x) =
ε̌n + 1} ⊂ Σm, we can apply (4.19) and (4.16) into
Equation (4.9) and have

d` ≤
1

p+
+ (1−A2) d`−1(A.10)

≤ 1

p+
+ (1−A2)C2/ε̌(by Equation (A.9))

≤ A2
1

p+A2
+ (1−A2)C2/ε̌

Because 0 ≤ A2 < 1 if we take C3 = max{ 1
p+A2

, C2/ε̌}
the base case of (A.3) is true. Suppose d`−1 ≤ C3 for
some ε̌n < ` < (1/2− ε̂)n, because {x ∈ Ω : Bias(x) =
`} ⊂ Σm we can use (A.10) and

d` =
1

p+
+ (1−A2) d`−1 ≤

1

p+
+ (1−A2)C3

≤ C3 −
(
A2C3 −

1

p+

)
≤ C3,

because C3 = max{ 1
p+A2

C2/ε̌}
This finishes the proof of Equation (A.5).
Equation (A.6): Because {x ∈ Ω : Bias(x) = `} ⊂

Σl for all (1/2− ε̂)n < ` < n/2 we can apply (4.20) and
(4.17) into Equation (A.9), and get

d` ≤
4

1/2− `/n
+(1−A3)d`−1 =

4n

n/2− `
+(1−A3)d`−1
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Recursively applying this relation, d` is upper bounded
by

l∑
j=(1/2−ε̂)n+1

4n(1−A3)`−j

n/2− j
+(1−A3)`−(1/2−ε̌)nd(1/2−ε̂)n

because of Equation (A.5) this is at most

≤
l∑

j=(1/2−ε̂)n+1

4n(1−A3)`−j

n/2− j
+ C3

≤ 4n

`−(1/2−ε̂)n−1∑
i=0

(1−A3)i

n/2− `+ i
+ C3

(taking i = `− j)

≤ 4n

n/2− `

`−(1/2−ε̂)n−1∑
i=0

(1−A3)i
n/2− `

n/2− `+ i
+ C3

Because (1 − A3)i n/2−`
n/2−`+i ≤ (1 − A3)i and taking

C4 ≥ 2/A3 + ε̂C3, d` is bounded above by

4n

n/2− `

∞∑
i=0

(1−A3)i+C3 =
4

A3

n

n/2− `
+C3 ≤

C4n

n/2− `

B Exertion and Drift: Proof of Lemma 4.2 and
4.3

In this section, we want to control the exertion p+
G(x)

and drift p+
G(x) − p−G(x) of the process M on graph

G ∼ Gn,p. To achieve these upper bounds, we prove
several properties of dense Erdös-Rényi graphs which
might seem ad-hoc, but there is a common thread un-
der these lemmas: concentration phenomena in dense
Erdös-Rényi graph. Our main tools are the spectral
property of random graph and several variants of Cher-
noff bounds.

B.1 Exertion and Lemma 4.2 We partition the
lemma 4.2 into lemma B.1 and B.2, and use the mixing
lemma 2.1 to show all configurations have p+

G(x) close
to that of the complete graph if G is a good expander.

Lemma B.1. (Exertion of Σs,Σm) If G λ-expander
with nearly uniform degree E(δd), δd < 1 and λ2 <
1−δd
1+δd

· ε̂18 , for all x with Bias(x) < 1/2− ε̂,

ε̂

2
f

(
ε̂

2

)
< p+

G(x) ≤ 1.

Proof. Let’s consider a fixed configuration x where ε̂ ≤
pos(x) < 1/2 and where the number of red nodes is less
than the number of blue nodes’. We can partition the

V into three sets of vertices Sx, Tx, Ux ⊂ V such that

Sx = {v ∈ V : x(v) = 0, rx(v) <
ε̂

2
},(B.11)

Tx = {v ∈ V : x(v) = 0, rx(v) ≥ ε̂

2
}, and(B.12)

Ux = {v ∈ V : x(v) = 1}.(B.13)

Observe that Ux is the set of red nodes in configuration
x, and Sx ∪ Tx is the set of blue nodes so |Sx ∪ Tx| =
Pos(x) ≥ ε̂n. Moreover by the definition of M with
update function f , the definition in (B.12), and the
monotone property of f , the probability a node v ∈ Tx
becomes red in the next step, given v is chosen and the
current configuration is x, is greater than f( ε̂2 ). As a
result, every node in Tx has a constant probability to
change if chosen, and

p+
G(x) ≥ |Tx|

n
· f
(
ε̂

2

)
Therefore, if we prove the following inequality

(B.14) |Sx| <
ε̂

2
|V |

then the size of set Tx is greater than ε̂
2 |V |, and we have

p+
G(x) ≥ ε̂

2f
(
ε̂
2

)
which finishes the proof.

Now it is sufficient for us to prove equation (B.14).
By the definition in (B.11) we can upper bound the
number of edges between Sx and Ux, e(Sx, Ux), and use
mixing lemma 2.1 to upper bound the size of Sx.

First, since the degree of nodes are nearly uniform,
the volume of Sx, and Ux can be bounded

(1− δd)np|Sx| ≤ vol(Sx) ≤ (1 + δd)np|Sx|(B.15)

(1− δd)np|Ux| ≤ vol(Ux) ≤ (1 + δd)np|Ux|,(B.16)

and by the definition of Sx in (B.11) the number of edges
between Sx and Ux can be bounded as follows:

(B.17) e(Sx, Ux) ≤ ε̂

2
· vol(Sx) ≤ ε̂

2
· (1 + δd)np|Sx|

Applying mixing lemma 2.1 on sets Sx and Ux, and we
have∣∣∣∣e(Sx, Ux)− vol(Sx)vol(Ux)

vol(G)

∣∣∣∣ ≤ λ√vol(Sx)vol(Ux)

vol(Sx)vol(Ux)

vol(G)
− e(Sx, Ux) ≤ λ

√
vol(Sx)vol(Ux)

vol(Sx)vol(Ux)

vol(G)
− ε̂

2
vol(Sx) ≤ λ

√
vol(Sx)vol(Ux)

(by equation (B.17))

(
vol(Ux)

vol(G)
− ε̂

2

)√
vol(Sx) ≤ λ

√
vol(Ux)

(B.18)
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For the left hand side, because the degree of G is near

uniform, we can approximate the ratio of vol(Ux)
vol(G) by the

ratio of |Ux||G| as follows(
vol(Ux)

vol(G)
− ε̂

2

)√
vol(Sx)

≥
(

(1− δd)|Ux|
(1 + δd)|V |

− ε̂

2

)√
vol(Sx)

Because pos(x) < 1/2, this is

≥
(

(1− δd)/2
(1 + δd)

− ε̂

2

)√
vol(Sx)

≥ 1

2

(
1− δd
1 + δd

− ε̂
)√

vol(Sx)

≥ 1

3

√
vol(Sx).(B.19)

For the right hand side, we can upper bound the volume
of Ux by

(B.20) vol(Ux) ≤ vol(V ) ≤ (1 + δd)n
2p.

Applying equations (B.19) and (B.20) into equa-
tion (B.18) yields

1

9
vol(Sx) ≤ λ2vol(Ux)

vol(Sx) ≤ 9λ2(1 + δd)n
2p

(1− δd)np|Sx| ≤ 9λ2(1 + δd)n
2p

|Sx| ≤ 9λ2 1 + δd
1− δd

n = o(n)

which is smaller than ε̂
2n because λ2 < 1−δd

1+δd
· ε̂18 .

Lemma B.2. (Exertion of Σl) If G is a λ-expander
with nearly uniform degree E(δd), δd < 1 and λ2 <
1−δd
1+δd

· (1/2−ε̂)2
2 , for all x with bias(x) > 1/2− ε̂,

1

4
(1/2− bias(x)) < p+

G(x) ≤ (1/2− bias(x)).

Proof. Without lose of generality, we consider the con-
figuration x where pos(x) < ε̂.

The proof of the upper bound is straightforward.
Suppose Hv = {v changes from blue to red in the step
given v is chosen and the configuration is x}

p+
G(x) = PM[Bias(X1) = Bias(x) + 1|X0 = x]

=
1

n

∑
v∈V

PM[Hv]

≤ 1

n

∑
v∈V

I[v is blue] = pos(x) = (1/2− bias(x)).

For the lower bound, similar to lemma B.1, given a
configuration, we partition the set of nodes V into three
sets S′x, T

′
x, U

′
x

S′x = {v ∈ V : x(v) = 1, rx(v) ≥ 1

2
},(B.21)

T ′x = {v ∈ V : x(v) = 1, rx(v) <
1

2
},(B.22)

U ′x = {v ∈ V : x(v) = 1} = S′x ∪ T ′x(B.23)

To show a lower bound for p+
G(x), it is sufficient to

show that the fraction of red nodes T ′x ⊂ V is large and
has constant probability to change to blue if selected
to update. Because the probability that node v ∈ T ′x
becomes blue in the next step given v is chosen with
configuration x is f(1 − rx(v)), by the definition in
(B.22) and by the monotone property of f

f(1− rx(v)) ≥ f
(

1

2

)
≥ 1/2.

Suppose

(B.24) |S′x| <
1

2
Pos(x)

then the size of set T ′x is greater than 1
2Pos(x), and we

have a lower bound for p+
G(x): 1

2
|T ′x|
n ≥ 1

4pos(x) which
finishes the proof

Now it is sufficient for us to prove equation (B.24).
By the definition in (B.21) we can upper bound the
number of edges between S′x and U ′x, e(S′x, U

′
x), and use

mixing lemma 2.1 to upper bound the size of S′x.
First, since the degree of nodes are nearly uniform,

the volume of Sx, and Ux can be bounded

(1− δd)np|S′x| ≤ vol(S′x) ≤ (1 + δd)np|S′x|(B.25)

(1− δd)np|U ′x| ≤ vol(U ′x) ≤ (1 + δd)np|U ′x|,(B.26)

and by the definition of S′x in (B.11) the number of edges
between S′x and U ′x can be bounded as follows

(B.27) e(S′x, U
′
x) ≥ 1

2
· vol(S′x)

Applying mixing lemma 2.1 on sets S′x and U ′x, we have∣∣∣∣e(S′x, U ′x)− vol(S′x)vol(U ′x)

vol(G)

∣∣∣∣ ≤ λ√vol(S′x)vol(U ′x)

e(S′x, U
′
x) ≤ vol(S′x)vol(U ′x)

vol(G)
+ λ
√
vol(S′x)vol(U ′x)

By equation (B.27)

1

2
· vol(S′x) ≤ vol(′Sx)vol(U ′x)

vol(G)
+ λ

√
vol(S′x)vol(U ′x)
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Reorganizing the last inequality we have,

vol(S′x) ≤

 λ
1
2 −

vol(U ′x)
vol(G)

2

vol(U ′x)

Because 1
2 −

vol(U ′x)
vol(G) = 1

2 − pos(x) > 1/2− ε̂,

vol(S′x) ≤ λ2

(1/2− ε̂)2
vol(U ′x).

Finally by equations (B.25) and (B.26) and taking δd
small enough

|S′x| ≤
λ2

(1/2− ε̂)2
· 1 + δd

1− δd
vol(U ′x) <

1

2
vol(U ′x)

The last inequality holds because λ2 < 1−δd
1+δd

· (1/2−ε̂)2
2 .

B.2 Drift and Lemma 4.3 In this section, we want
to prove lemma 4.3 As discussed in section 4.3, we
will prove lower bounds for drift DG(x) in Σs,Σm and
Σl separately, and use the lower bound for p+

G(x) in
lemma 4.2 to prove lemma 4.3.

B.2.1 Drift in Σs and Σm The high level idea
is to use a serial of triangle inequalities: Given a
configuration x ∈ Ω:

1. The drift DG(x) is close to its expectation
EGn,p [DG(x)];

2. The expectation EGn,p [DG(x)] is close to the drift
on complete graphs DKn(x); and

3. The drift on the complete graph DKn(x) is lower
bounded by its bias(x).

The third part is easy because when pos(x) > 1/2 the
drift DKn(x) is
(B.28)
DKn(x) = p+

Kn
(x)− p−Kn(x) = f(pos(x))− pos(x)

and equations (4.18), (4.19), and (4.20) can be obtained
by the definition of f .

Therefore, our strategy for states in Σs,Σm is to ar-
gue the value of {DG(x)}x∈Ω is close to {DKn(x)}x∈Ω

with high probability. The first part is proved in
lemmas B.3 and B.4, and the second part is ful-
filled in lemma B.5. Informally lemma B.3 shows
EGn,p [DG(x)]−DKn(x) = O(1/n), and lemma B.4 shows

EGn,p [DG(x)]−DKn(x) = O(
√

(log n)/n).
Before digging into the lemmas, let’s rewrite DG(x).

Without lost of generality if pos(x) > 1/2,

DG(x) = EM[Pos(X ′)|X = x]− Pos(x)

=
1

n

∑
v∈V

PM[X ′(v) = 1|v is chosen, X = x]− pos(x)

=
1

n

∑
v∈V

f(rx(v))− pos(x),

and by symmetry of Gn,p we can fixed arbitrary node
v ∈ V and have

(B.29) EGn,p [DG(x)] = EGn,p [f(rx(v))]− pos(x).

Lemma B.3. (Expected Drift in Σs) If x ∈ Σs

where bias(x) < ε̌ then there exists constant K1 > 0
such that for large enough n,

EGn,p [DG(x)] ≥ f
(

1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

)
−K1

n
.

Lemma B.4. (Expected Drift in Σm) If x ∈ Σm

where ε̌ ≤ bias(x) ≤ 1/2 − ε̂ then there exists constant
K2 > 0 such that for large enough n, EGn,p [DG(x)] is
greater than

f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

)
−K2

√
log n

n
.

Lemma B.5. (Small noise in Σs and Σm) For all
x ∈ Σs ∪Σm, DG(x) there exists a constant L > 0 such
that when n large enough

DG(x)− EGn,p [DG(x)] > − L√
n

happens with high probability over the randomness of
Gn,p.

Properties of rx(v). Due to equation (B.29), to
prove lemma B.3 and B.4, it is sufficient for us to analyze
{EGn,p [f(rx(v))]}x∈Ω is close to {f (pos(x))}x∈Ω for
some fixed node v ∈ V . We use the principal of
deferred decisions—We reveal the randomness of the
graph G ∼ Gn,p after fixing node v and configuration x,
and apply a union bound over all configurations x ∈ Ω.

Fixing a configuration and node v, let’s consider a
bin with Pos(x) red balls and n − Pos(x) blue balls,
if we sample k balls without replacement, the expected
number of red balls among those k ball is pos(x) ·k, and
this random number has the same distribution as the
random variable rx(v) · k if G ∼ Gn,p is conditioned on
the degree of v being k.
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We define Ex(δr; v) to be the event

(B.30) Ex(δr; v) , {G : |rx(v)− pos(x)| ≤ δrpos(x)}.

Since rx(v) · k can be seen as a sample without replace-
ment, a standard argument combining theorems 2.3 and
2.2 upper bounds the probability of it deviating from
expectation by the one of sampling with replacement.
(B.31)

PGn,p [Ex(δr; v)|deg(v) = k] ≤ 2 exp

(
−δ

2
rk pos(x)

3

)
Proof of the Lemmas As discussed below equa-

tion (B.29), we want to prove the difference be-
tween EGn,p [f(rx(v))] and f (pos(x)) is of order O(1/n).

However, in contrast to the O(
√

(log n)/n) error in
lemma B.4 we need a smoothness property of f around
1/2 to derived this stronger result. The following two
lemmas prove some basic results about smooth func-
tions and conditional variance.

Lemma B.6. Given I ⊆ R, and X is a random variable
with support in I and expectation EX, if g : R 7→ R is
M2-smooth in I, then∣∣E[g(X)]− g(EX)

∣∣ ≤ M2

2

(
EX2 − (EX)2

)
.

Lemma B.7. Given a real-valued random variable X
and ε > 0 such that P[EX − ε ≤ X ≤ EX + ε)] > 0, we
have

Var[X|EX − ε ≤ X ≤ EX + ε] ≤ Var[X]

Proof. [lemma B.6] Let h(t) , g(EX + t(X − EX)).
Because g is smooth, we use the fundamental theorem
of Calculus, and have

E[g(X)]− g(EX) = EX [g(X)− g(EX)] = E
[∫ 1

0

h′(t)dt

]
= E

[∫ 1

0

g′
(
EX + t(X − EX)

)
(X − EX)dt

]
Because g is M2-smooth, we have for all a, a + b ∈ I
g′(a)−M2|b| ≤ g′(a+ b) ≤ g′(a) +M2|b| and by taking
a = EX and b = t(X − EX)

EX [g(X)]− g(EX)

≤ EX
[∫ 1

0

(g′(EX) +M2t(X − EX)) (X − EX)dt

]
= EX

[
g′(EX)(X − EX) +

M2

2
(X − EX)2

]
=
M2

2
EX

[
(X − EX)2

]
The lower bound −M2

2 EX
[
(X − EX)2

]
≤ EX [g(X)] −

g(EX) is can be derived similarity.

Proof. [lemma B.7] Let A the event that X is in the
interval [EX − ε,EX + ε]

Var[X|(1− δr)EX ≤ X ≤ (1 + δr)EX](B.32)

= Var[X|A]

= E
[(
X − E[X|A]

)2|A]
≤ E

[(
X − E[X]

)2|A](B.33)

The last inequality is true, because for all z,
E
[
(Z − z)2

]
≥ E

[
(Z − EZ)2

]
.

On the other hand, Var[X] is equal to

E
[
(X − E[X])2

∣∣A] Pr[A]+E
[
(X − E[X])2

∣∣¬A](1−Pr[A])

Because |X − E[X]| ≥ ε conditioned on ¬A and ε ≥
|X − E[X]| if A happens,

(B.34) E
[
(X − E[X])2

∣∣A] ≤ Var[X]

The proof is completed by combining (B.33), and
(B.34).

Proof. [lemma B.3] Following equation (B.29), our goal
is to derive a better approximation of

|EGn,p [f(rx(v))]− f(pos(x))|

We take ε̌ small enough so that [1/2−2ε̌, 1/2+2ε̌] ⊆ I1/2,

and so by the definition the update function f is M̌2-
smooth function in [1/2 − 2ε̌, 1/2 + 2ε̌]. Moreover we
take constants δr, δd to that δr ≤ ε̌ and δd < 1.

Let E be the event Ex(δr; v) ∧ E(δd; v) defined in
equation (B.30) and lemma 2.2 respectively. Informally,
if E happens that means the value of rx(v) is close to
its expectation pos(x) and the degree is nearly uniform.
Therefore we can decompose EGn,p [f(rx(v))]−f(pos(x))
as follows

|EGn,p [f(rx(v))]− f(pos(x))|
≤ |EGn,p [f(rx(v))|E ]− f(pos(x))|+ PGn,p [¬E ]

≤
∣∣EGn,p[f(rx(v))|E

]
− f

(
EGn,p [rx(v)|E ]

)∣∣
+
∣∣f(EGn,p [rx(v)|E ]

)
− f(pos(x))

∣∣+ PGn,p [¬E ]

Now we want to give upper bounds for these three terms.
For the first term, |EGn,p

[
f(rx(v))|E

]
−

f
(
EGn,p [rx(v)|E ]

)
| only depends on the random variable

rx(v)|E . By the definition of E the random variable
rx(v)|E has support in [(1 − δr)pos(x), (1 + δr)pos(x)]
and pos(x) ∈ [1/2 − ε̌, 1/2 + ε̌]. Therefore the support
of rx(v)|E is in I1/2 and∣∣EGn,p [f(rx(v))|E]− f

(
EGn,p [rx(v)|E ]

) ∣∣
≤ M̌2

2
VarGn,p [rx(v)|E ]

≤ M̌2

2
VarGn,p [rx(v)|E(δd)].
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The first inequality is true because f is smooth in I1/2
and lemma B.6. The second comes from lemma B.7.
Now we want to upper bound Var[rx(v)|E(δd)]. Re-
call that we observed that the random variable k ·
rx(v)|deg(v) = k can be seen as sampling balls from
bin with a pos(x) fraction of red balls without replace-
ment. Because the variance is a convex function by
theorem 2.2, the value of Var[rx(v)|deg(v) = k] is upper
bounded by the variance of sampling k balls from the

same bin with replacement, pos(x)(1−pos(x))
k . As a result,

VarGn,p [rx(v)|E(δd)] ≤
pos(x)(1− pos(x))

(1− δd)np
.

Because x ∈ Σs, 1/2 − ε̌ < pos(x) < 1/2 + ε̌, and δd is
some constant independent of n
(B.35)

|EGn,p
[
f(rx(v))|E

]
− f
(
EGn,p [rx(v)|E ]

)
| = 1/4− ε̌2

(1− δd)p
· 1

n
.

For the second term, because the update func-
tion f is Lipschitz, it is sufficient to prove an up-
per bound for |EGn,p [rx(v)|E] − pos(x)|. Note that in
the properties of rx(v) we show that EGn,p [rx(v)] =
pos(x). By the law of total probability we have,
|EGn,p [rx(v)] − EGn,p [rx(v)|E]| ≤ |EGn,p [rx(v)|¬E] −
EGn,p [rx(v)|E ]|PGn,p [¬E ] which is less than ≤ 2PGn,p [¬E ]
because 0 ≤ rx(v) ≤ 1. Therefore we have

(B.36) |EGn,p [rx(v)|E ]− pos(x)| ≤ 2PGn,p [¬E ].

For the last term, PGn,p [¬E ] we just use a union
bound:

PGn,p [¬E ] = PGn,p [¬Ex(δr; v) ∪ ¬E(δd; v)]

≤ PGn,p [¬Ex(δr)|E(δd; v)] + PGn,p [¬E(δd; v)]

≤ 2 exp

(
−1

3
δ2
r(1− δd)np · pos(x)

)
+ 2 exp

(
−δ2

dnp

3

)
.

(B.37)

Equation (B.37) is derived from equation 2.2 and equa-
tion (B.31). Because p > 0 and pos(x) ≥ 1/2 − ε̌ are
constants when x ∈ Σs for large enough n we have

(B.38) PGn,p [¬E ] ≤ 1

n
.

Recall that δd, δr are constants independent of n. Com-
bining equations (B.35), (B.36), and (B.38), we finish

the proof with K1 = 1/4−ε̌2
(1−δd)p + 3.

For lemma B.4, we want to prove the differ-
ence between EGn,p [f(rx(v))] and f (pos(x)) is of order

O(
√

log n/n) which is much weaker than lemma B.3,
and we only need to use the Lipschitz properties of
update function f , and concentration phenomenon for
rx(v) shown in equation (B.31).

Proof. [lemma B.4] Let E be the event of Ex(δr; v) ∧
E(δd; v) defined in equation (B.30) and lemma 2.2
respectively. Informally, if E happens that means the
value of rx(v) is close to expectation pos(x) and the
degree is nearly uniform. Therefore we can decompose
EGn,p [f(rx(v))]− f(pos(x)) as follows

|EGn,p [f(rx(v))]− f(pos(x))|
≤ |EGn,p [f(rx(v))|E ]− f(pos(x))|+ PGn,p [¬E ](B.39)

The first term |EGn,p [f(rx(v))|E ]− f(pos(x))| Since the
update function f is Lipschitz with Lipschitz constant
M1, if the event E happens |rx(v)− pos(x)| ≤ δrpos(x)
and,

|f(rx(v))− f(pos(x))| ≤M1 · |rx(v)− pos(x)|
≤M1 · δrpos(x) ≤M1δr

By taking δr = A
√

log n/n for some constant A which
will be specified later we have

(B.40) |EGn,p [f(rx(v))|E ]− f(pos(x))| = M1A

√
log n

n

For the second term by equation (B.37), PGn,p [¬E ] is
smaller than

2 exp

(
−δ

2
r(1− δd)np · pos(x)

3

)
+ 2 exp

(
−δ2

dnp

3

)
because pos(x) ≥ ε̂ = Ω(1) when x ∈ Σm. If δd
is some small constant and δr = A

√
log n/n, then

by taking A large enough PGn,p [¬E ] is smaller than

2 exp
(
−A

2(1−δd)p·pos(x)
3 log n

)
+ 2 exp

(
−δ2dnp

3

)
There-

fore

(B.41) PGn,p [¬E ] ≤
√

log n

n

Combining equation (B.40) and (B.41) into equa-
tion (B.39), and have

|EGn,p [f(rx(v))]− f(pos(x))| ≤ (M1A+ 1)

√
log n

n

and the proof is completed by taking K2 = (M1A+ 1).

Proof. [lemma B.5] Given a fixed configuration x ∈
A, random variable DG(x) has expectation D(x) with
randomness over Gn,p. Assuming the following claim
which we will later prove:

Claim B.1. If δd is some fixed constant, there exists
some constant K > 0 such that for all t > 1/

√
n, then

PGn,p [DG(x)−EGn,pDG(x) < −Kt|E(δd)] ≤ exp
(
−n2t2

)
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By taking t =
√

2 ln 2/n

PGn,p

[
DG(x)− EGn,pDG(x) < −K

√
2 ln 2√
n

∣∣E(δd)

]

≥ 1− exp (−2n ln 2) = 1− 1

4n
.

(B.42)

Apply a union bound over all configurations x ∈ Ω =
{0, 1}n we will derived a high probability result with
L = K

√
2 ln 2

PGn,p

[
∀x,DG(x)− EGn,pDG(x) ≥ −K

√
2 ln 2√
n

]

≥ PGn,p

[
∀x,DG(x)− EGn,pDG(x) ≥ −K

√
2 ln 2√
n

∣∣E(δd)

]
− PGn,p [¬E(δd)].

By union bound, it is greater than

1− 2nPGn,p

[
DG(x)− EGn,pDG(x) ≥ −K

√
2 ln 2√
n

∣∣E(δd)

]
− PGn,p [¬E(δd)].

By equation (B.42), this is lower bounded by

1− 2n · 4−n − PGn,p [¬E(δd)] = 1− o(1).

Therefore, it is sufficient for us to prove claim B.1.
Following the analysis in equation (B.29), if

pos(x) > 1/2,

DG(x) =
1

n

∑
v∈V

f(rx(v))− pos(x)

Now we think of {f(rG,x(v))}x∈Ω,v∈V as a set real-
valued functions with input G indexed by x and v.
Similarly we think {DG(x)}x∈Ω as a set of real-valued
functions with input G. We will apply theorem 2.4
with event E(δd) to prove claim B.1 which consists
of two parts: showing the maximum effect/Lipschitz
constant ci is small, and showing the event E(δd)
happens with high probability so that it does not change
the expectation too much.

For the first part, recall that the update function
f is M1-Lipschitz. Because given x, v if the degree of
the node v is k then adding/removing a single edge
in G changes the value of rG,x(v) by at most 1/k,
rG,x(v) is 1/k-Lipschitz. Therefore the Lipschitz con-
stants of {f(rG,x(v))}x∈Ω,v∈V are uniformly bounded
by O(M1/k) = O(1/k). Moreover fixing x if every node
have degree at least k, adding/removing a single edge

in G only affects two endpoints, and changes the value
of 1

n

∑
v∈V f(rx(v)) by at most O( 1

nk ).
As a result, if E(δd) happens, every node has nearly

uniform degree with constant δd. For all G,G′ in E(δd)
that differ in just the presence of a single edge e, we can
take ce = maxG,G′ |DG(x)−DG′(x)| and

(B.43) ce = O

(
1

nminv∈V deg(v)

)
= O

(
1

n2

)
Therefore, there exists some constant ξ > 0 such that∑
e c

2
e = ξ/n2 and 0 ≤ DG(x) ≤ 1, so we can apply

theorem 2.4 and

PGn,p
[
DG(x)− EGn,pDG(x) < −t′ − PGn,p [¬E(δd)]|E(δd)

]
≤ exp

(
−2

ξ
n2t′2

)
Note that by equation (2.3) when δd is some fixed
constant and n is large enough PGn,p [¬E(δd)] ≤ 1/

√
n,

and we finish the proof of equation (B.1) by taking
K ≥

√
ξ/2 + 1 and t ≥ 1/

√
n.

B.2.2 Drift in Σl Here we consider the phase of the
process when the fraction of red nodes is almost 1. The
laziness 1/p+

G(x) should be roughly the inverse of the
fraction of blue nodes and increases as the bias increases.
As a result to prove equation (4.20) we need to give a
better lower bound for the drift DG(x).

Lemma B.8. There exists small enough constants δd >
0, ε̂ > 0, and K3 > 0. If G has nearly uniform degree,
E(δd), such that DG(x) ≥ K3(1/2 − bias(x)) for all
x ∈ Σl.

The following proof is basically a counting argument:
when x ∈ Σl the number of red nodes is so small for
any node to ahve a majority of red neighbors.

Proof. Without lose of generality, we only consider
configurations x where pos(x) < ε̂ and pos(x) = 1/2 −
bias(x). Given p, δd we can take ε̂ small enough such
that ε̂

(1−δd)p ∈ I0. Because there are at most ε̂n red

nodes and for all v ∈ V deg(v) ≥ (1 − δd)np, we have
rx(v) ∈ I0 and by the property of update function

(B.44) f(rx(v)) ≤ M̂1 · rx(v) < rx(v)

If we define Rx = {u ∈ V : x(u) = 1} to be the set of
red nodes, by similarly to equation (B.29)4 we have

p+
G(x)− p−G(x) = pos(x)− 1

n

∑
v∈V

f(rx(v)).

4In contrast to equation (B.29) where pos(x) > 1/2, here
pos(x) < 1/2
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By the equation (B.44), this is greater than

≥ pos(x)− 1

n

∑
v∈V

M̂1rx(v)

= pos(x)− M̂1

n

∑
v∈V

e(Sx, v)

deg(v)

≥ pos(x)− M̂1

n

e(Sx, V )

minv∈V deg(v)
.

The last is true because deg(v) ≥ minv∈V deg(v)
and

∑
v e(Sx, v) = e(Sx, V ). Because

∑
v e(Sx, v) ≤

|Sx|maxu∈Sx deg(u), and |Sx|n = pos(x),

p+
G(x)− p−G(x) ≥

(
1− M̂1 maxu∈Sx deg(u)

minv∈V deg(v)

)
pos(x)

≥
(

1− 1 + δd
1− δd

M̂1

)
pos(x)

> K3pos(x) = K3(1/2− bias(x))

The last inequality is true by taking δd small enough
and 0 < K3 ≤ 1− 1+δd

1−δd M̂1.

B.3 Proof of Lemma 4.3

Proof. We prove each equation in turn.
Equation (4.18). First, for drift DG(x) = p+

G(x)−
p−G(x) we apply the idea illustrated at the beginning of
section B.2.1. For the first and second steps, we have

p+
G(x)− p−G(x)−

(
f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

))
= p+

G(x)− p−G(x)− (p+(x)− p−(x)) + (p+(x)− p−(x))

−
(
f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

))
By lemma B.3 and B.5, with high probability, this is
greater than

≥ −K1

n
− L√

n
≥ −K1 + L√

n

For the last step, because the update function f satisfies
f ′(1/2) ≥ M̌1 > 1, we can take ε̌ small enough such that
for all h such that 0 ≤ h < ε̌,

f

(
1

2
+ h

)
− f

(
1

2

)
≥ M̌1 + 1

2
h

As a result, with high probability we have for all x ∈ Σs

where bias(x) < ε̌

(B.45) p−G(x)− p+
G(x) ≤ −M̌1 − 1

2
bias(x) +

K1 + L√
n

On the other hand, by equation (4.16), we have

(B.46) 1 ≤ 1

p+
G(x)

<
1

ε̂
2f
(
ε̂
2

)
Multiplying equation (B.45) by equation (B.46) we
have,

p−G(x)

p+
G(x)

≤ 1 +−M̌1 − 1

ε̂f
(
ε̂
2

) bias(x) +
K1 + L
ε̂
2f
(
ε̂
2

) 1√
n

which finishes the proof of equation (4.18) by taking

A1 = M̌1−1

ε̂f( ε̂2 )
, and B1 = 2(K1+L)

M̌1−1
which are positive

constants.
For equation (4.19). First, for drift DG(x) =

p+
G(x) − p−G(x) using argument similar to the proof of

(4.18), we have with high probability by lemmas B.4
and B.5, for all x ∈ Σm, p+

G(x)− p−G(x) is greater than

(B.47) f

(
1

2
+ bias(x)

)
−
(

1

2
+ bias(x)

)
− K2√

n
− L

n
.

Recalled that the update function f is Lipschitz and
∀0 < h < 1/2, f(1/2 + h) > 1/2 + h, we can define its
minimum over a compact set [1/2 + ε̌, 1− ε̂]

(B.48) 0 < δf , min
ε̌≤h≤1/2−ε̂

f

(
1

2
+ h

)
−
(

1

2
+ h

)
Combining equations (B.47), and (B.48), for large
enough n we have with high probability for all x ∈ Σm

(B.49) p−G(x)− p+
G(x) ≤ −δf +

K2√
n

+
L

n
≤ −δf

2

Multiplying equation (B.49) by equation (B.46) we
have,

p−G(x)

p+
G(x)

≤ 1− δf

ε̂f
(
ε̂
2

)
which finishes the proof of equation (4.19) by taking

A2 =
δf

ε̂f( ε̂2 )
and 0 < A2 < 1.

For equation (4.20), by lemmas B.8 and 4.2, we
have p−G(x)−p+

G(x) ≤ −K3(1/2− bias(x)), and 1
4 (1/2−

bias(x)) ≤ p+
G(x). Therefore

p−G(x)

p+
G(x)

≤ 1− 4K3

This finishes the proof by taking A3 = 4K3.
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